Stable Region Correspondences Between Non-Isometric Shapes

We consider the problem of finding meaningful correspondences between 3D models that are related but not necessarily very similar. When the shapes are quite different, a point‐to‐point map is not always appropriate, so our focus in this paper is a method to build a set of correspondences between sha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 35; číslo 5; s. 121 - 133
Hlavní autori: Ganapathi-Subramanian, V., Thibert, B., Ovsjanikov, M., Guibas, L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.08.2016
Wiley
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the problem of finding meaningful correspondences between 3D models that are related but not necessarily very similar. When the shapes are quite different, a point‐to‐point map is not always appropriate, so our focus in this paper is a method to build a set of correspondences between shape regions or parts. The proposed approach exploits a variety of feature functions on the shapes and makes use of the key observation that points in matching parts have similar ranks in the sorting of the corresponding feature values. Our algorithm proceeds in two steps. We first build an affinity matrix between points on the two shapes, based on feature rank similarity over many feature functions. We then define a notion of stability of a pair of regions, with respect to this affinity matrix, obtained as a fixed point of a nonlinear operator. Our method yields a family of corresponding maximally stable regions between the two shapes that can be used to define shape parts. We observe that this is an instance of the biclustering problem and that it is related to solving a constrained maximal eigenvalue problem. We provide an algorithm to solve this problem that mimics the power method. We show the robustness of its output to noisy input features as well its convergence properties. The obtained part correspondences are shown to be almost perfect matches in the isometric case, and also semantically appropriate even in non‐isometric cases. We provide numerous examples and applications of this technique, for example to sharpening correspondences in traditional shape matching algorithms.
Bibliografia:istex:D3DF689CC3A53A6A472EE931E70EA2E89756C079
ArticleID:CGF12969
ark:/67375/WNG-CQLWSGS0-H
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12969