Regularized Unconstrained Weakly Submodular Maximization

Submodular optimization finds applications in machine learning and data mining. In this paper, we study the problem of maximizing functions of the form \(h = f-c\), where \(f\) is a monotone, non-negative, weakly submodular set function and \(c\) is a modular function. We design a deterministic appr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Zhu, Yanhui, Basu, Samik, Pavan, A
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 19.08.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Submodular optimization finds applications in machine learning and data mining. In this paper, we study the problem of maximizing functions of the form \(h = f-c\), where \(f\) is a monotone, non-negative, weakly submodular set function and \(c\) is a modular function. We design a deterministic approximation algorithm that runs with \({{O}}(\frac{n}{\epsilon}\log \frac{n}{\gamma \epsilon})\) oracle calls to function \(h\), and outputs a set \({S}\) such that \(h({S}) \geq \gamma(1-\epsilon)f(OPT)-c(OPT)-\frac{c(OPT)}{\gamma(1-\epsilon)}\log\frac{f(OPT)}{c(OPT)}\), where \(\gamma\) is the submodularity ratio of \(f\). Existing algorithms for this problem either admit a worse approximation ratio or have quadratic runtime. We also present an approximation ratio of our algorithm for this problem with an approximate oracle of \(f\). We validate our theoretical results through extensive empirical evaluations on real-world applications, including vertex cover and influence diffusion problems for submodular utility function \(f\), and Bayesian A-Optimal design for weakly submodular \(f\). Our experimental results demonstrate that our algorithms efficiently achieve high-quality solutions.
AbstractList Submodular optimization finds applications in machine learning and data mining. In this paper, we study the problem of maximizing functions of the form \(h = f-c\), where \(f\) is a monotone, non-negative, weakly submodular set function and \(c\) is a modular function. We design a deterministic approximation algorithm that runs with \({{O}}(\frac{n}{\epsilon}\log \frac{n}{\gamma \epsilon})\) oracle calls to function \(h\), and outputs a set \({S}\) such that \(h({S}) \geq \gamma(1-\epsilon)f(OPT)-c(OPT)-\frac{c(OPT)}{\gamma(1-\epsilon)}\log\frac{f(OPT)}{c(OPT)}\), where \(\gamma\) is the submodularity ratio of \(f\). Existing algorithms for this problem either admit a worse approximation ratio or have quadratic runtime. We also present an approximation ratio of our algorithm for this problem with an approximate oracle of \(f\). We validate our theoretical results through extensive empirical evaluations on real-world applications, including vertex cover and influence diffusion problems for submodular utility function \(f\), and Bayesian A-Optimal design for weakly submodular \(f\). Our experimental results demonstrate that our algorithms efficiently achieve high-quality solutions.
Author Pavan, A
Basu, Samik
Zhu, Yanhui
Author_xml – sequence: 1
  givenname: Yanhui
  surname: Zhu
  fullname: Zhu, Yanhui
– sequence: 2
  givenname: Samik
  surname: Basu
  fullname: Basu, Samik
– sequence: 3
  givenname: A
  surname: Pavan
  fullname: Pavan, A
BookMark eNotjs1KAzEYRYMoWGsfwN2A6xm_5EtmkqUUtUKLoBWXJZMfSZ0mOj9S-_SO2NXlwuGee0FOY4qOkCsKBZdCwI1u9-G7YBxkAbxkcEImDJHmkjN2TmZdtwUAVlZMCJwQ-ezeh0a34eBs9hpNil3f6hDH9ub0R_OTvQz1Ltk_JlvpfdiFg-5DipfkzOumc7NjTsn6_m49X-TLp4fH-e0y14Kp3NRggGkJpnLCGobSW6S1l5Qj1qhq600JylJVKg6-1BYrRj1w4ceXHHBKrv9nP9v0Nbiu32zT0MbRuEFQFKigXOEv9UJJ2Q
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2408.04620
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a529-cb0c02a80c7e5dc238fd31bf81433b39bdfc609d196940f6ad3721f045f000403
IEDL.DBID M7S
IngestDate Mon Jun 30 09:16:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a529-cb0c02a80c7e5dc238fd31bf81433b39bdfc609d196940f6ad3721f045f000403
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/3091015149?pq-origsite=%requestingapplication%
PQID 3091015149
PQPubID 2050157
ParticipantIDs proquest_journals_3091015149
PublicationCentury 2000
PublicationDate 20240819
PublicationDateYYYYMMDD 2024-08-19
PublicationDate_xml – month: 08
  year: 2024
  text: 20240819
  day: 19
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8800869
SecondaryResourceType preprint
Snippet Submodular optimization finds applications in machine learning and data mining. In this paper, we study the problem of maximizing functions of the form \(h =...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Approximation
Data mining
Machine learning
Maximization
Optimization
Title Regularized Unconstrained Weakly Submodular Maximization
URI https://www.proquest.com/docview/3091015149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60VfDkGx-17MHrtmmy292cBKVFDy1LrVhPJU9YtLt1t5bqrzeJWz0IXjyGBBImYeabycx8AJekixhXiBs3FYd-ILUlctfEZziIbNY7VpF0ZBPRcBhPJjSpAm5llVa51olOUctc2Bh5m1jDZsxTQK_mr75ljbK_qxWFxibUbZeEjkvdu_-OsWCzVxiSr89M17qrzYpVumzZvl4tW5aJfqlgZ1f6u_890R7UEzZXxT5sqOwAtl0-pygPIR45jvki_VDSe8iERYGWDMKMHhV7fnn3jMaY5dKu8QZslc6qeswjGPd745tbvyJJ8FmIqS84EgizGIlIhVIYA6wl6XAdGxxEOKFcatFFVNouOAHSXSaJ8fm0AXLawjlEjqGW5Zk6AQ9LIzEmA60xC6KYMuOaRILjQHAjKapPobGWw7R66OX0Rwhnf0-fww42eMCGYzu0AbVF8aYuYEssF2lZNKF-3Rsmo6a7PzNK7gbJ0yfSVqVA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Qe9BjYdltafdgPKgEwiNEMXIj230YojwERPA_-R-dLaAHE28cPDZtNu3Mduab2Zn5AM5ZnohIkwjDVOq7njKWyN0wV1AvsFXvVAcqJpsIarWw2eT1BHwuemFsWeXCJsaGWvWkzZFnmXVs6J48ftV_dS1rlD1dXVBozLZFWU_fMWQbXpZuUL8XlBZuG9dFd84q4AqfcldGRBIqQiID7SuJHssolotMiMCBRYxHysg84cqOjfGIyQvFMEgyiHyMxT-E4bIrkEIUQXlcKXj_ndKh-Gm-z2Znp_GksKwYTNrjjB0jlrFdoOSXxY_dWGHznwlgC1J10deDbUjo7g6sxdWqcrgL4Z1-suWz7Q-tnIeutBjXUl3g1aMWzy9TB-1hp6fsM05VTNqdebfpHjSW8a77kOz2uvoAHKpQQUJ5xlDhBSEXGHgFMqKejFAx3BxCeiH21vw3HrZ-ZH709-0zWC82qpVWpVQrH8MGReRjE885nobkaPCmT2BVjkft4eA03jIOtJasoS8QbPxX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+Unconstrained+Weakly+Submodular+Maximization&rft.jtitle=arXiv.org&rft.au=Zhu%2C+Yanhui&rft.au=Basu%2C+Samik&rft.au=Pavan%2C+A&rft.date=2024-08-19&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2408.04620