Analytic Continuation of Generalized Trigonometric Functions
Via a unified geometric approach, a class of generalized trigonometric functions with two parameters are analytically extended to maximal domains on which they are univalent. Some consequences are deduced concerning radius of convergence for the Maclaurin series, commutation with rotation, continuat...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autor: | |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
13.01.2022
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Via a unified geometric approach, a class of generalized trigonometric functions with two parameters are analytically extended to maximal domains on which they are univalent. Some consequences are deduced concerning radius of convergence for the Maclaurin series, commutation with rotation, continuation beyond the domain of univalence, and periodicity. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2106.15109 |