Performance evaluation results of evolutionary clustering algorithm star for clustering heterogeneous datasets

This article presents the data used to evaluate the performance of evolutionary clustering algorithm star (ECA*) compared to five traditional and modern clustering algorithms. Two experimental methods are employed to examine the performance of ECA* against genetic algorithm for clustering++ (GENCLUS...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Hassan, Bryar A, Rashid, TarikA, Mirjalili, Seyedali
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 30.04.2021
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents the data used to evaluate the performance of evolutionary clustering algorithm star (ECA*) compared to five traditional and modern clustering algorithms. Two experimental methods are employed to examine the performance of ECA* against genetic algorithm for clustering++ (GENCLUST++), learning vector quantisation (LVQ) , expectation maximisation (EM) , K-means++ (KM++) and K-means (KM). These algorithms are applied to 32 heterogenous and multi-featured datasets to determine which one performs well on the three tests. For one, ther paper examines the efficiency of ECA* in contradiction of its corresponding algorithms using clustering evaluation measures. These validation criteria are objective function and cluster quality measures. For another, it suggests a performance rating framework to measurethe the performance sensitivity of these algorithms on varos dataset features (cluster dimensionality, number of clusters, cluster overlap, cluster shape and cluster structure). The contributions of these experiments are two-folds: (i) ECA* exceeds its counterpart aloriths in ability to find out the right cluster number; (ii) ECA* is less sensitive towards dataset features compared to its competitive techniques. Nonetheless, the results of the experiments performed demonstrate some limitations in the ECA*: (i) ECA* is not fully applied based on the premise that no prior knowledge exists; (ii) Adapting and utilising ECA* on several real applications has not been achieved yet.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2105.02810