Enabling Relational Database Analytical Processing in Bulk-Bitwise Processing-In-Memory

Bulk-bitwise processing-in-memory (PIM), an emerging computational paradigm utilizing memory arrays as computational units, has been shown to benefit database applications. This paper demonstrates how GROUP-BY and JOIN, database operations not supported by previous works, can be performed efficientl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Perach, Ben, Ronen, Ronny, Kvatinsky, Shahar
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 02.11.2023
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bulk-bitwise processing-in-memory (PIM), an emerging computational paradigm utilizing memory arrays as computational units, has been shown to benefit database applications. This paper demonstrates how GROUP-BY and JOIN, database operations not supported by previous works, can be performed efficiently in bulk-bitwise PIM for relational database analytical processing. We extend the gem5 simulator and evaluated our hardware modifications on the Star Schema Benchmark. We show that compared to previous works, our modifications improve (on average) execution time by 1.83X, energy by 4.31X, and the system's lifetime by 3.21X. We also achieved a speedup of 4.65X over MonetDB, a modern state-of-the-art in-memory database.
Bibliographie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2302.01675