Polynomials with rational generating functions and real zeros

This paper investigates the location of the zeros of a sequence of polynomials generated by a rational function with a binomial-type denominator. We show that every member of a two-parameter family consisting of such generating functions gives rise to a sequence of polynomials \(\{P_{m}(z)\}_{m=0}^{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: gacs, Tamas, Tran, Khang
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.01.2016
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the location of the zeros of a sequence of polynomials generated by a rational function with a binomial-type denominator. We show that every member of a two-parameter family consisting of such generating functions gives rise to a sequence of polynomials \(\{P_{m}(z)\}_{m=0}^{\infty}\) that is eventually hyperbolic. Moreover, the real zeros of the polynomials \(P_{m}(z)\) form a dense subset of an interval \(I\subset\mathbb{R}^{+}\), whose length depends on the particular values of the parameters in the generating function.
Bibliographie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1601.02582