Physics-informed neural networks via stochastic Hamiltonian dynamics learning
In this paper, we propose novel learning frameworks to tackle optimal control problems by applying the Pontryagin maximum principle and then solving for a Hamiltonian dynamical system. Applying the Pontryagin maximum principle to the original optimal control problem shifts the learning focus to redu...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
26.04.2024
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!