End-to-end autoencoding architecture for the simultaneous generation of medical images and corresponding segmentation masks

Despite the increasing use of deep learning in medical image segmentation, acquiring sufficient training data remains a challenge in the medical field. In response, data augmentation techniques have been proposed; however, the generation of diverse and realistic medical images and their correspondin...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Aghiles Kebaili, Lapuyade-Lahorgue, Jérôme, Vera, Pierre, Ruan, Su
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 17.11.2023
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite the increasing use of deep learning in medical image segmentation, acquiring sufficient training data remains a challenge in the medical field. In response, data augmentation techniques have been proposed; however, the generation of diverse and realistic medical images and their corresponding masks remains a difficult task, especially when working with insufficient training sets. To address these limitations, we present an end-to-end architecture based on the Hamiltonian Variational Autoencoder (HVAE). This approach yields an improved posterior distribution approximation compared to traditional Variational Autoencoders (VAE), resulting in higher image generation quality. Our method outperforms generative adversarial architectures under data-scarce conditions, showcasing enhancements in image quality and precise tumor mask synthesis. We conduct experiments on two publicly available datasets, MICCAI's Brain Tumor Segmentation Challenge (BRATS), and Head and Neck Tumor Segmentation Challenge (HECKTOR), demonstrating the effectiveness of our method on different medical imaging modalities.
AbstractList Despite the increasing use of deep learning in medical image segmentation, acquiring sufficient training data remains a challenge in the medical field. In response, data augmentation techniques have been proposed; however, the generation of diverse and realistic medical images and their corresponding masks remains a difficult task, especially when working with insufficient training sets. To address these limitations, we present an end-to-end architecture based on the Hamiltonian Variational Autoencoder (HVAE). This approach yields an improved posterior distribution approximation compared to traditional Variational Autoencoders (VAE), resulting in higher image generation quality. Our method outperforms generative adversarial architectures under data-scarce conditions, showcasing enhancements in image quality and precise tumor mask synthesis. We conduct experiments on two publicly available datasets, MICCAI's Brain Tumor Segmentation Challenge (BRATS), and Head and Neck Tumor Segmentation Challenge (HECKTOR), demonstrating the effectiveness of our method on different medical imaging modalities.
Author Aghiles Kebaili
Vera, Pierre
Ruan, Su
Lapuyade-Lahorgue, Jérôme
Author_xml – sequence: 1
  fullname: Aghiles Kebaili
– sequence: 2
  givenname: Jérôme
  surname: Lapuyade-Lahorgue
  fullname: Lapuyade-Lahorgue, Jérôme
– sequence: 3
  givenname: Pierre
  surname: Vera
  fullname: Vera, Pierre
– sequence: 4
  givenname: Su
  surname: Ruan
  fullname: Ruan, Su
BookMark eNotzc1KAzEUBeAgCtbaB3AXcD01v01mKaVaoeCm-3InuTOd2klqkhHBl7dYV4ezON-5I9chBiTkgbO5slqzJ0jf_ddcSM7nnCkjrshESMkrq4S4JbOcD4wxsTBCazkhP6vgqxIrDJ7CWCIGF30fOgrJ7fuCrowJaRsTLXukuR_GY4GAccy0w4AJSh8DjS0d0PcOjrQfoMNM4ey5mBLmUwx_YMZuwFAugwHyR74nNy0cM87-c0q2L6vtcl1t3l_fls-bCrQwlamds5xja52wwnPFLdRGndsCtDPWMeO5E4whb1hrFajaQuNZw5nXrpFySh4v7CnFzxFz2R3imML5cSdsrZg2pjbyF1gAY4s
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2311.10472
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-79cc811ef8c282d1418a9748c26a5c78c07d1c200e1b0f84a498abd0b10d5cb33
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:17:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-79cc811ef8c282d1418a9748c26a5c78c07d1c200e1b0f84a498abd0b10d5cb33
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2894057797?pq-origsite=%requestingapplication%
PQID 2894057797
PQPubID 2050157
ParticipantIDs proquest_journals_2894057797
PublicationCentury 2000
PublicationDate 20231117
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 20231117
  day: 17
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8509712
SecondaryResourceType preprint
Snippet Despite the increasing use of deep learning in medical image segmentation, acquiring sufficient training data remains a challenge in the medical field. In...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Data acquisition
Data augmentation
Image acquisition
Image processing
Image quality
Image segmentation
Machine learning
Masks
Medical imaging
Tumors
Title End-to-end autoencoding architecture for the simultaneous generation of medical images and corresponding segmentation masks
URI https://www.proquest.com/docview/2894057797
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxGA3aKnhyx50cvMYmM5lJchKUFgUtg4roqWSylCKdqU0rgn_eJI7bxYvHMBCGfOTL-7b3ADjmViU41wxZj40RNdSiEqcWeewvjMDUZpGB7_6K9fv84UEUTcLNNW2Vnz4xOmpdq5Aj7_jAIGALJtjp5BkF1ahQXW0kNBZBOzCV0RZon3X7xc1XliXJmcfM6Uc5M5J3deT0dfRy4mENCfXNyAz82wnHl6W3-t9_WgPtQk7MdB0smGoDLMeOTuU2wVu30mhWI1NpKOezOhBWhncK_iwdQA9ZoYeA0I1CZ6GsTD13cBipqIPFYG3h-KOUA0dj73oclH4_FSU9JnWciIHODMfNBFMFx9I9uS1w1-venV-gRmkBySxhiAmlOCHGcuUjME0o4dLHGX6Vy0wxrjDTxNsUG1Jiy6mkgstS45JgnakyTbdBq6orswOgYBjbXGRZlmiqciM5TYzmJBdlyVVqdsHB51EOmtviBt_nuPf3532wEuTewywgYQegNZvOzSFYUi-zkZseNcY_Cv2bt35VXF4Xj-_Ytb_n
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JTxsxFLZQAJUTtKUqW-sDPRrsiWdsHyoOLCIiRDlEFZwijxcUocykccIifhP_sc9OQtsLNw4cR5ZGtt_T5-_tCO1LbzJaWEE8cGPCHfekpE1PgPsrpyj3eerA96stOh15daW6S-h5UQsT0yoXmJiA2tYm-sgPwTCI3EIocTT6TeLUqBhdXYzQmKnFhXu8B5Mt_GydgHx_ZNnZae_4nMynChCdZ4IIZYxkzHlpwNqwjDOpgVPDV6FzI6ShwjLYP3WspF5yzZXUpaUlozY3ZfR_AuIvc9B12UDL3dZl9_rFqZMVAih6cxY9Tb3CDvX4YXB3ACyKxXBqakT8P-anh-xs_Z1dwQYcXY_c-CNactUntJryVU34jJ5OK0smNXGVxXo6qWM7zvgK438DIxgIOQaCi8Mg5k3qytXTgG9So-2oj7j2eDgLVOHBEIA1YA3_M2lgyahO9T44uJvhvD6rwkMdbsMm6r3Fcb-gRlVX7ivCSlDqC5XneWa5KZyWPHNWskKVpTRNt4V2F5Lrz7Eg9P-Kbfv15e_ow3nvst1vtzoXO2gtDraPVY9M7KLGZDx1e2jF3E0GYfxtrncY9d9YzH8AQAkYhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-end+autoencoding+architecture+for+the+simultaneous+generation+of+medical+images+and+corresponding+segmentation+masks&rft.jtitle=arXiv.org&rft.au=Aghiles+Kebaili&rft.au=Lapuyade-Lahorgue%2C+J%C3%A9r%C3%B4me&rft.au=Vera%2C+Pierre&rft.au=Ruan%2C+Su&rft.date=2023-11-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2311.10472