Analysis of chaotic dynamical systems with autoencoders

We focus on chaotic dynamical systems and analyze their time series with the use of autoencoders, i.e., configurations of neural networks that map identical output to input. This analysis results in the determination of the latent space dimension of each system and thus determines the minimal number...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Almazova, N, Barmparis, G D, Tsironis, G P
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 22.09.2021
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We focus on chaotic dynamical systems and analyze their time series with the use of autoencoders, i.e., configurations of neural networks that map identical output to input. This analysis results in the determination of the latent space dimension of each system and thus determines the minimal number of nodes necessary to capture the essential information contained in the chaotic time series. The constructed chaotic autoencoders generate similar maximal Lyapunov exponents as the original chaotic systems and thus encompass their essential dynamical information.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2109.13078