Hybrid Classical-Quantum Autoencoder for Anomaly Detection
We propose a Hybrid classical-quantum Autoencoder (HAE) model, which is a synergy of a classical autoencoder (AE) and a parametrized quantum circuit (PQC) that is inserted into its bottleneck. The PQC augments the latent space, on which a standard outlier detection method is applied to search for an...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
16.12.2021
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose a Hybrid classical-quantum Autoencoder (HAE) model, which is a synergy of a classical autoencoder (AE) and a parametrized quantum circuit (PQC) that is inserted into its bottleneck. The PQC augments the latent space, on which a standard outlier detection method is applied to search for anomalous data points within a classical dataset. Using this model and applying it to both standard benchmarking datasets, and a specific use-case dataset which relates to predictive maintenance of gas power plants, we show that the addition of the PQC leads to a performance enhancement in terms of precision, recall, and F1 score. Furthermore, we probe different PQC Ans\"atze and analyse which PQC features make them effective for this task. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2112.08869 |