Constant Time Updates in Hierarchical Heavy Hitters

Monitoring tasks, such as anomaly and DDoS detection, require identifying frequent flow aggregates based on common IP prefixes. These are known as \emph{hierarchical heavy hitters} (HHH), where the hierarchy is determined based on the type of prefixes of interest in a given application. The per pack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Ran Ben Basat, Einziger, Gil, Friedman, Roy, Luizelli, Marcelo Caggiani, Waisbard, Erez
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.07.2017
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monitoring tasks, such as anomaly and DDoS detection, require identifying frequent flow aggregates based on common IP prefixes. These are known as \emph{hierarchical heavy hitters} (HHH), where the hierarchy is determined based on the type of prefixes of interest in a given application. The per packet complexity of existing HHH algorithms is proportional to the size of the hierarchy, imposing significant overheads. In this paper, we propose a randomized constant time algorithm for HHH. We prove probabilistic precision bounds backed by an empirical evaluation. Using four real Internet packet traces, we demonstrate that our algorithm indeed obtains comparable accuracy and recall as previous works, while running up to 62 times faster. Finally, we extended Open vSwitch (OVS) with our algorithm and showed it is able to handle 13.8 million packets per second. In contrast, incorporating previous works in OVS only obtained 2.5 times lower throughput.
Bibliographie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1707.06778