Approximate solutions for robust multiobjective optimization programming in Asplund spaces
In this paper, we study a nonsmooth/nonconvex multiobjective optimization problem with uncertain constraints in arbitrary Asplund spaces. We first provide necessary optimality condition in a fuzzy form for approximate weakly robust efficient solutions and then establish necessary optimality theorem...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
14.11.2022
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study a nonsmooth/nonconvex multiobjective optimization problem with uncertain constraints in arbitrary Asplund spaces. We first provide necessary optimality condition in a fuzzy form for approximate weakly robust efficient solutions and then establish necessary optimality theorem for approximate weakly robust quasi-efficient solutions of the problem in the sense of the limiting subdifferential by exploiting a fuzzy optimality condition in terms of the Frechet subdifferential. Sufficient conditions for approximate (weakly) robust quasi-efficient solutions to such a problem are also driven under the new concept of generalized pseudo convex functions. Finally, we address an approximate Mond-Weir-type dual robust problem to the reference problem and explore weak, strong, and converse duality properties under assumptions of pseudo convexity. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2205.01145 |