A lift of the Seiberg-Witten equations to Kaluza-Klein 5-manifolds
We consider Riemannian 4-manifolds \((X,g_X)\) with a Spin^c-structure and a suitable circle bundle \(Y\) over \(X\) such that the Spin^c-structure on \(X\) lifts to a spin structure on \(Y\). With respect to these structures a spinor \(\phi\) on \(X\) lifts to an untwisted spinor \(\psi\) on \(Y\)...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavný autor: | |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
16.08.2021
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider Riemannian 4-manifolds \((X,g_X)\) with a Spin^c-structure and a suitable circle bundle \(Y\) over \(X\) such that the Spin^c-structure on \(X\) lifts to a spin structure on \(Y\). With respect to these structures a spinor \(\phi\) on \(X\) lifts to an untwisted spinor \(\psi\) on \(Y\) and a U(1)-gauge field \(A\) for the Spin^c-structure can be absorbed into a Kaluza-Klein metric \(g_Y^A\) on \(Y\). We show that irreducible solutions \((A,\phi)\) to the Seiberg-Witten equations on \((X,g_X)\) for the given Spin^c-structure are equivalent to irreducible solutions \(\psi\) of a Dirac equation with cubic non-linearity on the Kaluza-Klein circle bundle \((Y,g_Y^A)\). As an application we consider solutions to the equations in the case of Sasaki 5-manifolds which are circle bundles over Kaehler-Einstein surfaces. |
|---|---|
| Bibliografia: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1906.10108 |