Noise Reduction in X-ray Photon Correlation Spectroscopy with Convolutional Neural Networks Encoder-Decoder Models

Like other experimental techniques, X-ray Photon Correlation Spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneousl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Konstantinova, Tatiana, Wiegart, Lutz, Rakitin, Maksim, DeGennaro, Anthony M, Barbour, Andi M
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 05.08.2021
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Like other experimental techniques, X-ray Photon Correlation Spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneously addressing the disparate origins of noise in the experimental data is challenging. We propose a computational approach for improving the signal-to-noise ratio in two-time correlation functions that is based on Convolutional Neural Network Encoder-Decoder (CNN-ED) models. Such models extract features from an image via convolutional layers, project them to a low dimensional space and then reconstruct a clean image from this reduced representation via transposed convolutional layers. Not only are ED models a general tool for random noise removal, but their application to low signal-to-noise data can enhance the data quantitative usage since they are able to learn the functional form of the signal. We demonstrate that the CNN-ED models trained on real-world experimental data help to effectively extract equilibrium dynamics parameters from two-time correlation functions, containing statistical noise and dynamic heterogeneities. Strategies for optimizing the models performance and their applicability limits are discussed.
AbstractList Like other experimental techniques, X-ray Photon Correlation Spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneously addressing the disparate origins of noise in the experimental data is challenging. We propose a computational approach for improving the signal-to-noise ratio in two-time correlation functions that is based on Convolutional Neural Network Encoder-Decoder (CNN-ED) models. Such models extract features from an image via convolutional layers, project them to a low dimensional space and then reconstruct a clean image from this reduced representation via transposed convolutional layers. Not only are ED models a general tool for random noise removal, but their application to low signal-to-noise data can enhance the data quantitative usage since they are able to learn the functional form of the signal. We demonstrate that the CNN-ED models trained on real-world experimental data help to effectively extract equilibrium dynamics parameters from two-time correlation functions, containing statistical noise and dynamic heterogeneities. Strategies for optimizing the models performance and their applicability limits are discussed.
Author Konstantinova, Tatiana
Rakitin, Maksim
Barbour, Andi M
Wiegart, Lutz
DeGennaro, Anthony M
Author_xml – sequence: 1
  givenname: Tatiana
  surname: Konstantinova
  fullname: Konstantinova, Tatiana
– sequence: 2
  givenname: Lutz
  surname: Wiegart
  fullname: Wiegart, Lutz
– sequence: 3
  givenname: Maksim
  surname: Rakitin
  fullname: Rakitin, Maksim
– sequence: 4
  givenname: Anthony
  surname: DeGennaro
  middlename: M
  fullname: DeGennaro, Anthony M
– sequence: 5
  givenname: Andi
  surname: Barbour
  middlename: M
  fullname: Barbour, Andi M
BookMark eNotj8tOwzAQRS0EEqX0A9hZYp1ijxPbWaJSHlIpCLpgVznxRE2J4mInLf17TGBzj0ZHGt17QU5b1yIhV5xNU51l7Mb473o_Bc5gyoRW6oSMQAie6BTgnExC2DLGQCrIMjEifunqgPQNbV92tWtp3dKPxJsjfd24Lt4z5z02ZnDvOyw770Lpdkd6qLtNtO3eNf2vNQ1dYu8HdAfnPwOdt6Wz6JM7HEifYzbhkpxVpgk4-eeYrO7nq9ljsnh5eJrdLhKTgUyAYwEaOZNGczSxsM0xr6CqAFCJKCrLWWEZZnFOpa0UKheZVbIoUtBWjMn139udd189hm69db2PNcMaUq1kmuZKih_nU19h
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2102.03877
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a526-21eb28e106a81ea267d9e9f2ff22e73e10fd10bd0e5002f8d637935d76bb428d3
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:20:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-21eb28e106a81ea267d9e9f2ff22e73e10fd10bd0e5002f8d637935d76bb428d3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2487644976?pq-origsite=%requestingapplication%
PQID 2487644976
PQPubID 2050157
ParticipantIDs proquest_journals_2487644976
PublicationCentury 2000
PublicationDate 20210805
PublicationDateYYYYMMDD 2021-08-05
PublicationDate_xml – month: 08
  year: 2021
  text: 20210805
  day: 05
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7664576
SecondaryResourceType preprint
Snippet Like other experimental techniques, X-ray Photon Correlation Spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Artificial neural networks
Coders
Correlation
Encoders-Decoders
Feature extraction
Image reconstruction
Neural networks
Noise
Noise reduction
Photon correlation spectroscopy
Photons
Random noise
Signal to noise ratio
Spectrum analysis
Time correlation functions
Title Noise Reduction in X-ray Photon Correlation Spectroscopy with Convolutional Neural Networks Encoder-Decoder Models
URI https://www.proquest.com/docview/2487644976
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmJt3iUygOr28bOc0KitIKBKCodylTZsS0qVUlJSkX_PXdpCgMSC5MVeYnO8d19d1_uI-QWYKzUENpY4CgEKEKw0OkJFvg29LThKtK6EpsI4jicTKKkLriVNa1y6xMrR63zFGvkXQ6ZNcRuiJ53i3eGqlHYXa0lNHZJEyeVuQ3SvB_Eyei7ysL9AHJmsWlnVsO7urL4nK06iHQ62LoNfjnhKrIMD__7TkekmciFKY7JjslOyH7F6EzLU1LE-aw0dISjWdH4dJbRCSvkmiZvOSR8tI-6HBsmHEUV-iXOtcwXa4qlWdjNVvVXKecUR3hUS8UZL-kgw1_hC_ZgqpWiotq8PCPj4WDcf2S1wAKTHvcZdwBWhwZAoQwdI8FWOjKR5dZybgIBG1Y7PaV7xgNL2lD7Am6zpwNfKUAtWpyTRpZn5oJQ5XrCpoGybupDSpYqOPTI1X5qhHQjYS9Ja2vBaX1JyumP-a7-3r4mBxypJMjU8FqksSw-zA3ZS1fLWVm06zNvI23zBZ6Sp-fk9QsEsLvV
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BAcHEW7zxAKNpY-c5IAYeogKqCjqUqXJiW1RCaUmg0B_Ff-TObWFAYuvA5OEkS85d7n33ARxhGKs0mjYeeSkFKFLy2KtJHoU2DrQRaaK1A5uIGo243U6aM_A5mYWhtsqJTnSKWvcyypFXBXrWaLvRep71XzihRlF1dQKhMRKLGzN8x5CtPK1fIH-Phbi6bJ1f8zGqAFeBCLnwMJaMDUZCKvaMEmGkE5NYYa0QJpJIsNqrpbpmAlQWNtahRBEOdBSmKbrqWuK1szDno6zHFZhr1u-aj99JHbwNXXQ5qp66XWFVVXx0BycUWJ1QpTj6pfOdIbta_mefYAWfrvqmWIUZk6_BgutXzcp1KBq9bmnYPS2eJdFi3Zy1eaGGrPnUQ3eWnRPqyKjPjz30HdQPDeAMGSWekZoPxv-cema0oMQdriO-ZJc5DfoX_MK4kxFe3HO5Aa1pvHITKnkvN1vAUj-QNotS62chOpxZiiKd-DrMjFR-Iu027E0Y1hmrgLLzw62dv8mHsHjdurvt3NYbN7uwJKhphnpSgj2ovBZvZh_ms8FrtywOxuLGoDNl7n4B2DUUkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Reduction+in+X-ray+Photon+Correlation+Spectroscopy+with+Convolutional+Neural+Networks+Encoder-Decoder+Models&rft.jtitle=arXiv.org&rft.au=Konstantinova%2C+Tatiana&rft.au=Wiegart%2C+Lutz&rft.au=Rakitin%2C+Maksim&rft.au=DeGennaro%2C+Anthony+M&rft.date=2021-08-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2102.03877