Noise Reduction in X-ray Photon Correlation Spectroscopy with Convolutional Neural Networks Encoder-Decoder Models
Like other experimental techniques, X-ray Photon Correlation Spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneousl...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
05.08.2021
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Like other experimental techniques, X-ray Photon Correlation Spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneously addressing the disparate origins of noise in the experimental data is challenging. We propose a computational approach for improving the signal-to-noise ratio in two-time correlation functions that is based on Convolutional Neural Network Encoder-Decoder (CNN-ED) models. Such models extract features from an image via convolutional layers, project them to a low dimensional space and then reconstruct a clean image from this reduced representation via transposed convolutional layers. Not only are ED models a general tool for random noise removal, but their application to low signal-to-noise data can enhance the data quantitative usage since they are able to learn the functional form of the signal. We demonstrate that the CNN-ED models trained on real-world experimental data help to effectively extract equilibrium dynamics parameters from two-time correlation functions, containing statistical noise and dynamic heterogeneities. Strategies for optimizing the models performance and their applicability limits are discussed. |
|---|---|
| AbstractList | Like other experimental techniques, X-ray Photon Correlation Spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneously addressing the disparate origins of noise in the experimental data is challenging. We propose a computational approach for improving the signal-to-noise ratio in two-time correlation functions that is based on Convolutional Neural Network Encoder-Decoder (CNN-ED) models. Such models extract features from an image via convolutional layers, project them to a low dimensional space and then reconstruct a clean image from this reduced representation via transposed convolutional layers. Not only are ED models a general tool for random noise removal, but their application to low signal-to-noise data can enhance the data quantitative usage since they are able to learn the functional form of the signal. We demonstrate that the CNN-ED models trained on real-world experimental data help to effectively extract equilibrium dynamics parameters from two-time correlation functions, containing statistical noise and dynamic heterogeneities. Strategies for optimizing the models performance and their applicability limits are discussed. |
| Author | Konstantinova, Tatiana Rakitin, Maksim Barbour, Andi M Wiegart, Lutz DeGennaro, Anthony M |
| Author_xml | – sequence: 1 givenname: Tatiana surname: Konstantinova fullname: Konstantinova, Tatiana – sequence: 2 givenname: Lutz surname: Wiegart fullname: Wiegart, Lutz – sequence: 3 givenname: Maksim surname: Rakitin fullname: Rakitin, Maksim – sequence: 4 givenname: Anthony surname: DeGennaro middlename: M fullname: DeGennaro, Anthony M – sequence: 5 givenname: Andi surname: Barbour middlename: M fullname: Barbour, Andi M |
| BookMark | eNotj8tOwzAQRS0EEqX0A9hZYp1ijxPbWaJSHlIpCLpgVznxRE2J4mInLf17TGBzj0ZHGt17QU5b1yIhV5xNU51l7Mb473o_Bc5gyoRW6oSMQAie6BTgnExC2DLGQCrIMjEifunqgPQNbV92tWtp3dKPxJsjfd24Lt4z5z02ZnDvOyw770Lpdkd6qLtNtO3eNf2vNQ1dYu8HdAfnPwOdt6Wz6JM7HEifYzbhkpxVpgk4-eeYrO7nq9ljsnh5eJrdLhKTgUyAYwEaOZNGczSxsM0xr6CqAFCJKCrLWWEZZnFOpa0UKheZVbIoUtBWjMn139udd189hm69db2PNcMaUq1kmuZKih_nU19h |
| ContentType | Paper |
| Copyright | 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2102.03877 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a526-21eb28e106a81ea267d9e9f2ff22e73e10fd10bd0e5002f8d637935d76bb428d3 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:20:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a526-21eb28e106a81ea267d9e9f2ff22e73e10fd10bd0e5002f8d637935d76bb428d3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2487644976?pq-origsite=%requestingapplication% |
| PQID | 2487644976 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2487644976 |
| PublicationCentury | 2000 |
| PublicationDate | 20210805 |
| PublicationDateYYYYMMDD | 2021-08-05 |
| PublicationDate_xml | – month: 08 year: 2021 text: 20210805 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2021 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7664576 |
| SecondaryResourceType | preprint |
| Snippet | Like other experimental techniques, X-ray Photon Correlation Spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Artificial neural networks Coders Correlation Encoders-Decoders Feature extraction Image reconstruction Neural networks Noise Noise reduction Photon correlation spectroscopy Photons Random noise Signal to noise ratio Spectrum analysis Time correlation functions |
| Title | Noise Reduction in X-ray Photon Correlation Spectroscopy with Convolutional Neural Networks Encoder-Decoder Models |
| URI | https://www.proquest.com/docview/2487644976 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60VfDkGx-17MHrtsmmSTYnwVpR0BBqD_VUNtkJFkpSk1rsv3cmTfUgePG0hIEQZnfn-WU-xq4TGyxX2bZI0BCInqM8EYBlBChj8Dj3IFgPcX3yw1CNx0FUF9zKGla5sYmVoTZ5QjXyrsTIGn03es-b-bsg1ijqrtYUGtusSZPKeg3WvB2E0fC7yiI9H2NmZ93OrIZ3dXXxOV12KNPpUOvW_2WEK89yv__fbzpgzUjPoThkW5Adsd0K0ZmUx6wI82kJfEijWUn5fJrxsSj0ikdvOQZ8vE-8HGskHCcW-gXNtcznK06lWZRmy_pU6hmnER7VUmHGSz7I6Ff4QtxBtXJiVJuVJ2x0Pxj1H0RNsCC0Kz0hbUyrFWBSqJUNGnVlAghSmaZSgu-gIDW2FRsLXNRkqozn4G12cQ_jGLMW45yyRpZncMZ46sk4jlWgPRdzbcy6IA20ql5uJailc9baaHBSX5Jy8qO-i7_Fl2xPEpSEkBpuizUWxQdcsZ1kuZiWRbve8zbBNl_wKXp8jl6_AL2ou7A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R27TsMw8AQFBBNv8SjgAUZD4jSJMyAGaEVFqSroUKbKiS-iUpWWpBT6UfwjZ7eFAYmNgcnDSac4d773A-A0cdHxpevyhAQBr3gy4BE6mqPUmti5gtF0iGsjbDZlpxO1FuBj3gtjyirnMtEKaj1ITIz8QpBlTbqbtOfV8IWbrVEmuzpfoTFlizucvJHLVlzWb4i-Z0LUqu3rWz7bKsCVLwIuXPIlJZInpKSLSgShjjBKRZoKgaFHgFS7Tqwd9ElYpFIHHrGwTx8ex2Sqa4_QLsJShXhdlmCpVb9vPX0FdQgbmejeNHtqZ4VdqPy9Nz43jtW5yRSHP2S-VWS19X_2Czbo6mqI-SYsYLYFK7ZeNSm2IW8OegWyBzN41rAW62Wsw3M1Ya3nAZmz7NpsHZnW-bHHoV31YxpwJswEngmajWdvTvWZGVBiD1sRX7BqZhr9c36D9mRmX1y_2IH2X9xyF0rZIMM9YGkg4jiWkQr8sCLIp8Q0UtIidxIiyj6U5wTrzkRA0f2m1sHv4BNYvW3fN7qNevPuENaEKZoxNSl-GUqj_BWPYDkZj3pFfjxjNwbdP6buJ9hYFG0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Reduction+in+X-ray+Photon+Correlation+Spectroscopy+with+Convolutional+Neural+Networks+Encoder-Decoder+Models&rft.jtitle=arXiv.org&rft.au=Konstantinova%2C+Tatiana&rft.au=Wiegart%2C+Lutz&rft.au=Rakitin%2C+Maksim&rft.au=DeGennaro%2C+Anthony+M&rft.date=2021-08-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2102.03877 |