The Algorithm Configuration Problem

The field of algorithmic optimization has significantly advanced with the development of methods for the automatic configuration of algorithmic parameters. This article delves into the Algorithm Configuration Problem, focused on optimizing parametrized algorithms for solving specific instances of de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Iommazzo, Gabriele, D'Ambrosio, Claudia, Frangioni, Antonio, Liberti, Leo
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 01.03.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The field of algorithmic optimization has significantly advanced with the development of methods for the automatic configuration of algorithmic parameters. This article delves into the Algorithm Configuration Problem, focused on optimizing parametrized algorithms for solving specific instances of decision/optimization problems. We present a comprehensive framework that not only formalizes the Algorithm Configuration Problem, but also outlines different approaches for its resolution, leveraging machine learning models and heuristic strategies. The article categorizes existing methodologies into per-instance and per-problem approaches, distinguishing between offline and online strategies for model construction and deployment. By synthesizing these approaches, we aim to provide a clear pathway for both understanding and addressing the complexities inherent in algorithm configuration.
AbstractList The field of algorithmic optimization has significantly advanced with the development of methods for the automatic configuration of algorithmic parameters. This article delves into the Algorithm Configuration Problem, focused on optimizing parametrized algorithms for solving specific instances of decision/optimization problems. We present a comprehensive framework that not only formalizes the Algorithm Configuration Problem, but also outlines different approaches for its resolution, leveraging machine learning models and heuristic strategies. The article categorizes existing methodologies into per-instance and per-problem approaches, distinguishing between offline and online strategies for model construction and deployment. By synthesizing these approaches, we aim to provide a clear pathway for both understanding and addressing the complexities inherent in algorithm configuration.
Author Iommazzo, Gabriele
D'Ambrosio, Claudia
Frangioni, Antonio
Liberti, Leo
Author_xml – sequence: 1
  givenname: Gabriele
  surname: Iommazzo
  fullname: Iommazzo, Gabriele
– sequence: 2
  givenname: Claudia
  surname: D'Ambrosio
  fullname: D'Ambrosio, Claudia
– sequence: 3
  givenname: Antonio
  surname: Frangioni
  fullname: Frangioni, Antonio
– sequence: 4
  givenname: Leo
  surname: Liberti
  fullname: Liberti, Leo
BookMark eNotzUFLwzAYgOEgDpzbfoC3ws6tyfclbXIcRZ0w0EPv42uabB1domkr_nwFPb23571ntyEGx9iD4IXUSvFHSt_9VwGSY8G5NvqGLQFR5FoC3LHNOF4451BWoBQu2bY5u2w3nGLqp_M1q2Pw_WlONPUxZO8ptoO7rtnC0zC6zX9XrHl-aup9fnh7ea13h5wUqNxKtB6FEKU0Vee48Z0gsNoLJ1CBJmW5qQyVUFkqDbSq1dqRIdNiByRxxbZ_7EeKn7Mbp-Mlzin8Ho9gsJLSACr8AY_LQZY
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2403.00898
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a525-c43cf31116497de09fd1a2c8f1e13528a5c0979a627ca692b5b88ea9a9b3d2a43
IEDL.DBID M7S
IngestDate Mon Jun 30 09:37:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-c43cf31116497de09fd1a2c8f1e13528a5c0979a627ca692b5b88ea9a9b3d2a43
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2937449235?pq-origsite=%requestingapplication%
PQID 2937449235
PQPubID 2050157
ParticipantIDs proquest_journals_2937449235
PublicationCentury 2000
PublicationDate 20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 20240301
  day: 01
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.861954
SecondaryResourceType preprint
Snippet The field of algorithmic optimization has significantly advanced with the development of methods for the automatic configuration of algorithmic parameters....
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Configurations
Machine learning
Optimization
Title The Algorithm Configuration Problem
URI https://www.proquest.com/docview/2937449235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66KXjyN_6Yo6DXuDZJ0-YkKhsKOoruME_jNT9mQbfZbsM_36Tt9CB48RiSQx4vfF94efk-hC6YMj5PmcCWWlPMuFEYGAisgCtfMaChKtX1H6J-Px4ORVIX3Iq6rXKFiSVQq6l0NfKOpaWIOTWx8Gr2gZ1rlHtdrS001lHTqSQEZeve83eNhfDI3php9ZhZSnd1IP_MlpdOhM4Jm4r4FwSXvNLb_u-OdlAzgZnOd9GanuyhzbKfUxb76Nym37t-G9v189d3z_3ry8aLKtteUpnIHKBBrzu4vcO1HwKGkIRYMioNtdjEmYiU9oVRARAZm0AHTqMFQumLSAAnkQQuSBqmcaxBgEipIsDoIWpMphN9hDyqUkmlJkaBYJwq4XT0YuMHihkeSXWMWquQR_WZLkY_8Z78PX2Ktoil_qpTq4Ua83yhz9CGXM6zIm-j5k23nzy1y1TZUXL_mLx8AfP9nl8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LT8IwGP-CqNGT7_hAXaIeJ1vbdevBGKMSCEhI5MBt6doOSRRwA9Q_yv_RdmN6MPHGwXOTpvne_R6_D-CcyNihEWG2dq2RTWgsbU44syWn0pGEY09m6Potv90Oej3WKcFnMQtj2ioLm5gZajkSJkde1W7JJwZNzLsev9pma5SprhYrNHKxaKqPN_1lS68ad5q_FwjV7ru3dXu-VcDmHvJsQbCIsdZwSpgvlcNi6XIkgthVrkE64Z5wmM84Rb7glKHIi4JAccZZhCXiBOtrl2BZRxGIZZ2Cj98pHUR9HaDjvHaaIYVVefI-mF0azDuDo8qCXxY_c2O1jX9GgE1Y7vCxSragpIbbsJp1q4p0B860cFs3z339vMnTi2WmFgf9aS7LVidfkbML3UU8aw_Kw9FQ7YOFZSSwUCiWnBGKJTMogUHsuJLE1BfyACoFhcO5xqbhD3kP_z4-hbV696EVthrt5hGsIx3k5D1pFShPkqk6hhUxmwzS5CSTDgvCBTPjC0gm9lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Algorithm+Configuration+Problem&rft.jtitle=arXiv.org&rft.au=Iommazzo%2C+Gabriele&rft.au=D%27Ambrosio%2C+Claudia&rft.au=Frangioni%2C+Antonio&rft.au=Liberti%2C+Leo&rft.date=2024-03-01&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2403.00898