Quantum autoencoders to denoise quantum data
Entangled states are an important resource for quantum computation, communication, metrology, and the simulation of many-body systems. However, noise limits the experimental preparation of such states. Classical data can be efficiently denoised by autoencoders---neural networks trained in unsupervis...
Saved in:
| Published in: | arXiv.org |
|---|---|
| Main Authors: | , |
| Format: | Paper |
| Language: | English |
| Published: |
Ithaca
Cornell University Library, arXiv.org
21.10.2019
|
| Subjects: | |
| ISSN: | 2331-8422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Entangled states are an important resource for quantum computation, communication, metrology, and the simulation of many-body systems. However, noise limits the experimental preparation of such states. Classical data can be efficiently denoised by autoencoders---neural networks trained in unsupervised manner. We develop a novel quantum autoencoder that successfully denoises Greenberger-Horne-Zeilinger states subject to spin-flip errors and random unitary noise. Various emergent quantum technologies could benefit from the proposed unsupervised quantum neural networks. |
|---|---|
| Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1910.09169 |