Quantum autoencoders to denoise quantum data
Entangled states are an important resource for quantum computation, communication, metrology, and the simulation of many-body systems. However, noise limits the experimental preparation of such states. Classical data can be efficiently denoised by autoencoders---neural networks trained in unsupervis...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
21.10.2019
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Entangled states are an important resource for quantum computation, communication, metrology, and the simulation of many-body systems. However, noise limits the experimental preparation of such states. Classical data can be efficiently denoised by autoencoders---neural networks trained in unsupervised manner. We develop a novel quantum autoencoder that successfully denoises Greenberger-Horne-Zeilinger states subject to spin-flip errors and random unitary noise. Various emergent quantum technologies could benefit from the proposed unsupervised quantum neural networks. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1910.09169 |