Migration as Submodular Optimization

Migration presents sweeping societal challenges that have recently attracted significant attention from the scientific community. One of the prominent approaches that have been suggested employs optimization and machine learning to match migrants to localities in a way that maximizes the expected nu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Gölz, Paul, Procaccia, Ariel D
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 15.11.2018
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Migration presents sweeping societal challenges that have recently attracted significant attention from the scientific community. One of the prominent approaches that have been suggested employs optimization and machine learning to match migrants to localities in a way that maximizes the expected number of migrants who find employment. However, it relies on a strong additivity assumption that, we argue, does not hold in practice, due to competition effects; we propose to enhance the data-driven approach by explicitly optimizing for these effects. Specifically, we cast our problem as the maximization of an approximately submodular function subject to matroid constraints, and prove that the worst-case guarantees given by the classic greedy algorithm extend to this setting. We then present three different models for competition effects, and show that they all give rise to submodular objectives. Finally, we demonstrate via simulations that our approach leads to significant gains across the board.
AbstractList Migration presents sweeping societal challenges that have recently attracted significant attention from the scientific community. One of the prominent approaches that have been suggested employs optimization and machine learning to match migrants to localities in a way that maximizes the expected number of migrants who find employment. However, it relies on a strong additivity assumption that, we argue, does not hold in practice, due to competition effects; we propose to enhance the data-driven approach by explicitly optimizing for these effects. Specifically, we cast our problem as the maximization of an approximately submodular function subject to matroid constraints, and prove that the worst-case guarantees given by the classic greedy algorithm extend to this setting. We then present three different models for competition effects, and show that they all give rise to submodular objectives. Finally, we demonstrate via simulations that our approach leads to significant gains across the board.
Author Procaccia, Ariel D
Gölz, Paul
Author_xml – sequence: 1
  givenname: Paul
  surname: Gölz
  fullname: Gölz, Paul
– sequence: 2
  givenname: Ariel
  surname: Procaccia
  middlename: D
  fullname: Procaccia, Ariel D
BookMark eNotjktLAzEURoMoWGt_gLsB3c5487iZZCnFF7R00e5LkkkkpZ3UZEbEX299rM7iwPm-K3Lep94TckOhEQoR7k3-jB8NVaAbYLLlZ2TCOKe1EoxdklkpO4AfwRD5hNwt41s2Q0x9ZUq1Hu0hdePe5Gp1HOIhfv2qa3IRzL742T-nZPP0uJm_1IvV8-v8YVEbZFiz1tughRA0aKM4OOG0pp1wDGRr0ArTgVSBW7DOOQgWtfcQjKWoT2cEn5Lbv-wxp_fRl2G7S2PuT4tbRoFRKUAi_wYu_kKL
ContentType Paper
Copyright 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1809.02673
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a525-27ebf94441f9a830c4c991d4c2067a5b4ad068f3b0bccc0fb59ee0fab15925543
IEDL.DBID M7S
IngestDate Mon Jun 30 09:32:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-27ebf94441f9a830c4c991d4c2067a5b4ad068f3b0bccc0fb59ee0fab15925543
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2102164065?pq-origsite=%requestingapplication%
PQID 2102164065
PQPubID 2050157
ParticipantIDs proquest_journals_2102164065
PublicationCentury 2000
PublicationDate 20181115
PublicationDateYYYYMMDD 2018-11-15
PublicationDate_xml – month: 11
  year: 2018
  text: 20181115
  day: 15
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2018
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6719202
SecondaryResourceType preprint
Snippet Migration presents sweeping societal challenges that have recently attracted significant attention from the scientific community. One of the prominent...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Competition
Computer simulation
Greedy algorithms
Machine learning
Migration
Optimization
Title Migration as Submodular Optimization
URI https://www.proquest.com/docview/2102164065
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TgMxEB1BAhIVtzhCtEXaTTa293CFBEoERcIKUoQqGl8oRQ52Q8TnYzsbKJBoKC03Htt68zyeeQPQylJhnZRRoYqQhMw4yds0xVCTxMKlIFQS6ZtNpMNhNh7zvAq4lVVa5RYTPVCrhXQx8o57mlhqbz3m7fI9dF2j3O9q1UJjF-pOJYH41L2X7xgLSVLLmOnmM9NLd3Ww-Jyu2060qu2m6S8I9n6lf_jfFR1BPcelLo5hR89PYN_nc8ryFFqD6dvmbAMsA4sOs4VyCafBk4WIWVV7eQajfm90_xBWDRFCjIkrHdPCcGYJjOGY0UgyadmdYtJJsGMsGKooyQwVkZBSRkbEXOvIoLCUxe4Do-dQmy_m-gKCjBOCtItapJrFiJwITCxX0AmPFUniS2hsbZ5Ul7qc_Bh89ff0NRxYXpG5kr1u3IDaqvjQN7An16tpWTShftcb5s9Nf1Z2lD8O8tcvfW6d9Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgQTb_EokKGMaVPHeQ2IAaha9UElOnSLzo6DOvRBUgr8KP4j57SBAYmtA7Mtyzqfv_vOvgdAxfcEGak4MiMLmcljXfLW89BUzCW4FMyWTGbNJrxezx8Og34BPvNcGB1WmWNiBtTRVOo38pp2TYjak8W8nb2YumuU_l3NW2gs1aKtPt7IZUtvWvd0vteMNR4Gd01z1VXARIfp_Csl4oATC4gD9G1LckkUKeJS1zFHR3CMLNePbWEJKaUVCydQyopRkN0n-s1tWnYDSlyDfxYp-PT9pMNcj2bYy7_TrFJYDZP30aKqa2RV9bD9C_EzM9bY_WcC2INSH2cq2YeCmhzAVhatKtNDqHRHz0vNNTA1CPvG00iH0xqPBIDjVWbpEQzWsa9jKE6mE3UChh8whnYdlfAUdxADJtAlJqTcwImY65xCORdxuLqyafgj37O_h69guznodsJOq9c-hx1iUL5OTqw7ZSjOk1d1AZtyMR-lyWWmHgaEaz6NL8Z79uA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migration+as+Submodular+Optimization&rft.jtitle=arXiv.org&rft.au=G%C3%B6lz%2C+Paul&rft.au=Procaccia%2C+Ariel+D&rft.date=2018-11-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1809.02673