Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation
Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velo...
Uloženo v:
| Vydáno v: | Journal of biomechanical engineering Ročník 134; číslo 5; s. 051001 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.05.2012
|
| Témata: | |
| ISSN: | 1528-8951, 1528-8951 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a "reference standard" of the patient's own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile. |
|---|---|
| AbstractList | Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a "reference standard" of the patient's own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile. Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a "reference standard" of the patient's own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile.Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a "reference standard" of the patient's own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile. |
| Author | Dhawan, Saurabh S Campbell, Ian C Oshinski, John N Quyyumi, Arshed A Ries, Jared Taylor, W Robert |
| Author_xml | – sequence: 1 givenname: Ian C surname: Campbell fullname: Campbell, Ian C email: iancampbell@gatech.edu organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA. iancampbell@gatech.edu – sequence: 2 givenname: Jared surname: Ries fullname: Ries, Jared – sequence: 3 givenname: Saurabh S surname: Dhawan fullname: Dhawan, Saurabh S – sequence: 4 givenname: Arshed A surname: Quyyumi fullname: Quyyumi, Arshed A – sequence: 5 givenname: W Robert surname: Taylor fullname: Taylor, W Robert – sequence: 6 givenname: John N surname: Oshinski fullname: Oshinski, John N |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22757489$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAUhYOMOA9d-AckSzcdk7Rp06UM4wMG3Oi6pMkNRtKkNqnQf28dR3B1Lud8HLhnjRY-eEDompItpZTf0W1BSFkKeoZWlDORiZrTxb97idYxfhBCqSjIBVoyVvGqEPUKTXtjQCUcDLbeQcJf4IKyacL9EIx1EHHwuJfJgk9Z7EFZYxVWoevHNLvBS4eNG63GevKysyriaLvRHbP405veASs5hDQzrTXjoI7ZJTo30kW4OukGvT3sX3dP2eHl8Xl3f8gkZ0XKhCJalVIJoZlhORAQSsiKtaXQpBVESAAGtazyoiyqss4155JwWkpKdZVTtkG3v73zQ58jxNR0NipwTnoIY2woYTnPi4qVM3pzQse2A930g-3kMDV_c7FvVmtvMQ |
| CitedBy_id | crossref_primary_10_1016_j_jvs_2017_08_094 crossref_primary_10_1016_j_medengphy_2020_07_001 crossref_primary_10_1002_cnm_70021 crossref_primary_10_1007_s13239_021_00559_2 crossref_primary_10_1016_j_compbiomed_2020_103644 crossref_primary_10_1016_j_cmpbup_2025_100194 crossref_primary_10_1063_5_0220173 crossref_primary_10_1007_s13239_013_0165_3 crossref_primary_10_1007_s10444_019_09722_9 crossref_primary_10_1177_1708538114552836 crossref_primary_10_1016_j_jtcvs_2016_09_040 crossref_primary_10_3390_bioengineering12050437 crossref_primary_10_1007_s10554_016_0934_9 crossref_primary_10_1007_s13239_023_00679_x crossref_primary_10_1016_j_compbiomed_2023_107287 crossref_primary_10_1016_j_jbiomech_2021_110893 crossref_primary_10_1159_000526872 crossref_primary_10_1007_s10237_016_0804_3 crossref_primary_10_1155_2021_2618625 crossref_primary_10_1177_0954406220911397 crossref_primary_10_1016_j_jbiomech_2017_06_005 crossref_primary_10_1002_cnm_2856 crossref_primary_10_1016_j_avsg_2017_04_016 crossref_primary_10_3390_app13085095 crossref_primary_10_3389_fphys_2016_00238 crossref_primary_10_1080_19942060_2021_2013322 crossref_primary_10_1007_s13239_022_00608_4 crossref_primary_10_1016_j_jbiomech_2016_11_025 crossref_primary_10_1016_j_jbiomech_2015_11_009 crossref_primary_10_1016_j_compfluid_2023_106043 crossref_primary_10_1002_cnm_70048 crossref_primary_10_1002_jmri_24423 crossref_primary_10_1109_TBME_2018_2880606 crossref_primary_10_1080_10255842_2024_2429789 crossref_primary_10_1016_j_cmpb_2021_106435 crossref_primary_10_1109_JBHI_2014_2305575 crossref_primary_10_1002_cnm_2868 crossref_primary_10_1007_s10237_023_01745_y crossref_primary_10_1007_s40430_023_04441_1 crossref_primary_10_1063_5_0226294 crossref_primary_10_3390_mca29050071 crossref_primary_10_1177_0954406219861127 crossref_primary_10_3389_fbioe_2022_855791 crossref_primary_10_1007_s10439_019_02307_z crossref_primary_10_1007_s10237_020_01395_4 crossref_primary_10_1007_s40430_021_03002_8 crossref_primary_10_1038_s41598_021_95315_w crossref_primary_10_1007_s10237_021_01542_5 crossref_primary_10_1016_j_jbiomech_2020_110019 crossref_primary_10_1017_jfm_2018_329 crossref_primary_10_1080_10255842_2021_1876036 crossref_primary_10_1016_j_cmpb_2022_106826 crossref_primary_10_1177_15266028221091890 crossref_primary_10_1016_j_compfluid_2021_105123 crossref_primary_10_1016_j_compfluid_2021_105201 crossref_primary_10_1017_S0962492917000046 crossref_primary_10_1016_j_euromechflu_2023_05_009 crossref_primary_10_1016_j_cma_2016_01_007 crossref_primary_10_1109_TBME_2020_2970244 crossref_primary_10_1007_s13239_013_0146_6 crossref_primary_10_1063_5_0245958 crossref_primary_10_1093_bmb_ldw049 crossref_primary_10_3390_app14198577 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1115/1.4006681 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Engineering Forestry |
| EISSN | 1528-8951 |
| ExternalDocumentID | 22757489 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL070531 – fundername: NHLBI NIH HHS grantid: R01 HL70531 |
| GroupedDBID | --- -~X .DC .GJ 29J 4.4 53G 5AI 5GY 6TJ AAYJJ ABJNI ACBEA ACGFO ACGFS ACKMT ACXMS ADPDT AI. ALEEW ALMA_UNASSIGNED_HOLDINGS CGR CS3 CUY CVF EBS ECM EIF EJD F5P H~9 L7B NPM P2P RAI RNS RXW TAE TN5 UKR VH1 WHG ZE2 7X8 AGNGV |
| ID | FETCH-LOGICAL-a524t-8c0dc6ac88d2f23e0e8c8a72b68d0b808aee2e9a734647693d55a0516a11d7312 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305793100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1528-8951 |
| IngestDate | Wed Oct 01 14:17:25 EDT 2025 Thu Apr 03 07:07:08 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a524t-8c0dc6ac88d2f23e0e8c8a72b68d0b808aee2e9a734647693d55a0516a11d7312 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3625536 |
| PMID | 22757489 |
| PQID | 1023534726 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1023534726 pubmed_primary_22757489 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-05-01 |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomechanical engineering |
| PublicationTitleAlternate | J Biomech Eng |
| PublicationYear | 2012 |
| References | 15191145 - IEEE Trans Med Imaging. 2004 Jun;23(6):704-13 11339329 - Ann Biomed Eng. 2001 Apr;29(4):321-9 15923735 - Stud Health Technol Inform. 2005;113:1-25 16706586 - J Biomech Eng. 2006 Jun;128(3):371-9 19675980 - Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):431-44 15567699 - Med Eng Phys. 2004 Dec;26(10):823-40 10396691 - J Biomech Eng. 1999 Jun;121(3):265-72 20064248 - BMC Med Imaging. 2010;10:1 19102572 - J Biomech Eng. 2009 Feb;131(2):021013 8434819 - Ann Biomed Eng. 1993;21(1):45-9 18854602 - Physiol Meas. 2008 Nov;29(11):1335-49 11701491 - Annu Rev Biomed Eng. 1999;1:299-329 9685141 - J Vasc Surg. 1998 Jul;28(1):143-56 11754454 - Magn Reson Med. 2002 Jan;47(1):149-59 10475577 - Physiol Meas. 1999 Aug;20(3):219-40 3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302 15253120 - Physiol Meas. 2004 Jun;25(3):691-7 11284665 - Ann Biomed Eng. 2001 Feb;29(2):109-20 12086000 - Ann Biomed Eng. 2002 Apr;30(4):483-97 18839484 - Psychol Bull. 1979 Mar;86(2):420-8 14558652 - Proc Inst Mech Eng H. 2003;217(5):393-403 20590284 - J Biomech Eng. 2010 Jul;132(7):071006 15180490 - Curr Drug Targets Cardiovasc Haematol Disord. 2004 Jun;4(2):183-97 17408332 - J Biomech Eng. 2007 Apr;129(2):273-8 14368548 - J Physiol. 1955 Mar 28;127(3):553-63 12063451 - J Thorac Cardiovasc Surg. 2002 Jun;123(6):1060-6 21142322 - J Biomech Eng. 2010 Dec;132(12):121008 |
| References_xml | – reference: 15567699 - Med Eng Phys. 2004 Dec;26(10):823-40 – reference: 11284665 - Ann Biomed Eng. 2001 Feb;29(2):109-20 – reference: 17408332 - J Biomech Eng. 2007 Apr;129(2):273-8 – reference: 15191145 - IEEE Trans Med Imaging. 2004 Jun;23(6):704-13 – reference: 19102572 - J Biomech Eng. 2009 Feb;131(2):021013 – reference: 16706586 - J Biomech Eng. 2006 Jun;128(3):371-9 – reference: 18839484 - Psychol Bull. 1979 Mar;86(2):420-8 – reference: 11339329 - Ann Biomed Eng. 2001 Apr;29(4):321-9 – reference: 14368548 - J Physiol. 1955 Mar 28;127(3):553-63 – reference: 19675980 - Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):431-44 – reference: 11754454 - Magn Reson Med. 2002 Jan;47(1):149-59 – reference: 15180490 - Curr Drug Targets Cardiovasc Haematol Disord. 2004 Jun;4(2):183-97 – reference: 10475577 - Physiol Meas. 1999 Aug;20(3):219-40 – reference: 12086000 - Ann Biomed Eng. 2002 Apr;30(4):483-97 – reference: 20590284 - J Biomech Eng. 2010 Jul;132(7):071006 – reference: 15253120 - Physiol Meas. 2004 Jun;25(3):691-7 – reference: 18854602 - Physiol Meas. 2008 Nov;29(11):1335-49 – reference: 10396691 - J Biomech Eng. 1999 Jun;121(3):265-72 – reference: 21142322 - J Biomech Eng. 2010 Dec;132(12):121008 – reference: 9685141 - J Vasc Surg. 1998 Jul;28(1):143-56 – reference: 3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302 – reference: 12063451 - J Thorac Cardiovasc Surg. 2002 Jun;123(6):1060-6 – reference: 15923735 - Stud Health Technol Inform. 2005;113:1-25 – reference: 8434819 - Ann Biomed Eng. 1993;21(1):45-9 – reference: 20064248 - BMC Med Imaging. 2010;10:1 – reference: 14558652 - Proc Inst Mech Eng H. 2003;217(5):393-403 – reference: 11701491 - Annu Rev Biomed Eng. 1999;1:299-329 |
| SSID | ssj0011840 |
| Score | 2.3516445 |
| Snippet | Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 051001 |
| SubjectTerms | Carotid Arteries - anatomy & histology Carotid Arteries - diagnostic imaging Carotid Arteries - physiology Computer Simulation Hemodynamics Humans Hydrodynamics Magnetic Resonance Angiography Middle Aged Models, Anatomic Pulsatile Flow Radiography Stress, Mechanical |
| Title | Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22757489 https://www.proquest.com/docview/1023534726 |
| Volume | 134 |
| WOSCitedRecordID | wos000305793100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qiujBx_paX0TwGm3TV3oSERcP7rIHlb2VNJlAQdt1uyv47820WdaLIHgpPTQlJJPMl5nJ9xFyZV0sksjkzLqjlIW5RjXAHJhOZaQDT4Df3IV5fUqGQzEepyMXcKtdWeViT2w2al0pjJHfIMVAFIQJj28nHwxVozC76iQ0VkknsFAGS7qS8TKLgKeXhi-VCyYslHDMQhYE3fjXIXpb4f-OLBsP09_5b992ybbDlvSuNYY9sgJll2z9YBzskg2U4kR9N_s6cGn1ffLVchjTytCitBNJsZBIWXxOnaR3TauSOgpWhpczscCIqkYRwkUTqXmbF5rqVuG-pnXx7pTBavyvxZkUJYJm9pu8MPNpGyo8IC_9h-f7R-Y0GZiMeDhjQnlaxVIJobnhAXgglJAJz2OhvVx4QgJwSGUShHGIOos6iqRd-LH0fZ0EPj8ka2VVwjGhAJEnY9A8NBAKE-UClNHgc18LY1v3yOVitDNr85jIkCVU8zpbjnePHLVTlk1aco6M8yRCRp2TP7Q-JZsW__C2fvGMdIxd8XBO1tXnrKinF40x2edwNPgGB8HWWw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+inlet+velocity+profiles+on+patient-specific+computational+fluid+dynamics+simulations+of+the+carotid+bifurcation&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Campbell%2C+Ian+C&rft.au=Ries%2C+Jared&rft.au=Dhawan%2C+Saurabh+S&rft.au=Quyyumi%2C+Arshed+A&rft.date=2012-05-01&rft.eissn=1528-8951&rft.volume=134&rft.issue=5&rft.spage=051001&rft_id=info:doi/10.1115%2F1.4006681&rft_id=info%3Apmid%2F22757489&rft_id=info%3Apmid%2F22757489&rft.externalDocID=22757489 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-8951&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-8951&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-8951&client=summon |