On some spectral properties of the weighted \(\overline\partial\)-Neumann problem

We derive a necessary condition for compactness of the weighted \(\overline\partial\)-Neumann operator on the space \(L^2(\mathbb C^n,e^{-\varphi})\), under the assumption that the corresponding weighted Bergman space of entire functions has infinite dimension. Moreover, we compute the essential spe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Berger, Franz, Haslinger, Friedrich
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 12.10.2016
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We derive a necessary condition for compactness of the weighted \(\overline\partial\)-Neumann operator on the space \(L^2(\mathbb C^n,e^{-\varphi})\), under the assumption that the corresponding weighted Bergman space of entire functions has infinite dimension. Moreover, we compute the essential spectrum of the complex Laplacian for decoupled weights, \(\varphi(z) = \varphi_1(z_1) + \dotsb + \varphi_n(z_n)\), and investigate (non-) compactness of the \(\overline\partial\)-Neumann operator in this case. More can be said if every \(\Delta\varphi_j\) defines a nontrivial doubling measure.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1509.08741