On a Generalisation of the Marcenko-Pastur Problem

We study the spectrum of generalized Wishart matrices, defined as \(\mathbf{F}=( X Y^\top + Y X^\top)/2T\), where \(X\) and \(Y\) are \(N \times T\) matrices with zero mean, unit variance IID entries and such that \(\mathbb{E}[X_{it} Y_{jt}]=c \delta_{i,j}\). The limit \(c=1\) corresponds to the Mar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Bouchaud, Jean-Philippe, Potters, Marc
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 20.09.2020
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the spectrum of generalized Wishart matrices, defined as \(\mathbf{F}=( X Y^\top + Y X^\top)/2T\), where \(X\) and \(Y\) are \(N \times T\) matrices with zero mean, unit variance IID entries and such that \(\mathbb{E}[X_{it} Y_{jt}]=c \delta_{i,j}\). The limit \(c=1\) corresponds to the Marcenko-Pastur problem. For a general \(c\), we show that the Stietjes transform of \(\mathbf{F}\) is the solution of a cubic equation. In the limit \(c=0\), \(T \gg N\) the density of eigenvalues converges to the Wigner semi-circle.
Bibliographie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2009.07113