On a Generalisation of the Marcenko-Pastur Problem

We study the spectrum of generalized Wishart matrices, defined as \(\mathbf{F}=( X Y^\top + Y X^\top)/2T\), where \(X\) and \(Y\) are \(N \times T\) matrices with zero mean, unit variance IID entries and such that \(\mathbb{E}[X_{it} Y_{jt}]=c \delta_{i,j}\). The limit \(c=1\) corresponds to the Mar...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Bouchaud, Jean-Philippe, Potters, Marc
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 20.09.2020
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the spectrum of generalized Wishart matrices, defined as \(\mathbf{F}=( X Y^\top + Y X^\top)/2T\), where \(X\) and \(Y\) are \(N \times T\) matrices with zero mean, unit variance IID entries and such that \(\mathbb{E}[X_{it} Y_{jt}]=c \delta_{i,j}\). The limit \(c=1\) corresponds to the Marcenko-Pastur problem. For a general \(c\), we show that the Stietjes transform of \(\mathbf{F}\) is the solution of a cubic equation. In the limit \(c=0\), \(T \gg N\) the density of eigenvalues converges to the Wigner semi-circle.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2009.07113