On a Generalisation of the Marcenko-Pastur Problem
We study the spectrum of generalized Wishart matrices, defined as \(\mathbf{F}=( X Y^\top + Y X^\top)/2T\), where \(X\) and \(Y\) are \(N \times T\) matrices with zero mean, unit variance IID entries and such that \(\mathbb{E}[X_{it} Y_{jt}]=c \delta_{i,j}\). The limit \(c=1\) corresponds to the Mar...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
20.09.2020
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study the spectrum of generalized Wishart matrices, defined as \(\mathbf{F}=( X Y^\top + Y X^\top)/2T\), where \(X\) and \(Y\) are \(N \times T\) matrices with zero mean, unit variance IID entries and such that \(\mathbb{E}[X_{it} Y_{jt}]=c \delta_{i,j}\). The limit \(c=1\) corresponds to the Marcenko-Pastur problem. For a general \(c\), we show that the Stietjes transform of \(\mathbf{F}\) is the solution of a cubic equation. In the limit \(c=0\), \(T \gg N\) the density of eigenvalues converges to the Wigner semi-circle. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2009.07113 |