On an Average Goldbach Representation Formula of Fujii
Fujii obtained a formula for the average number of Goldbach representations with lower order terms expressed as a sum over the zeros of the Riemann zeta-function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result, and obtain applications...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
20.12.2022
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Fujii obtained a formula for the average number of Goldbach representations with lower order terms expressed as a sum over the zeros of the Riemann zeta-function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result, and obtain applications conditional on various conjectures on zeros of the Riemann zeta-function. |
|---|---|
| Bibliographie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2110.14250 |