On an Average Goldbach Representation Formula of Fujii

Fujii obtained a formula for the average number of Goldbach representations with lower order terms expressed as a sum over the zeros of the Riemann zeta-function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result, and obtain applications...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Goldston, D A, Ade, Irma Suriajaya
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 20.12.2022
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Fujii obtained a formula for the average number of Goldbach representations with lower order terms expressed as a sum over the zeros of the Riemann zeta-function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result, and obtain applications conditional on various conjectures on zeros of the Riemann zeta-function.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2110.14250