TAPA: A Scalable Task-Parallel Dataflow Programming Framework for Modern FPGAs with Co-Optimization of HLS and Physical Design

In this paper, we propose TAPA, an end-to-end framework that compiles a C++ task-parallel dataflow program into a high-frequency FPGA accelerator. Compared to existing solutions, TAPA has two major advantages. First, TAPA provides a set of convenient APIs that allow users to easily express flexible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Guo, Licheng, Yuze Chi, Lau, Jason, Song, Linghao, Tian, Xingyu, Khatti, Moazin, Qiao, Weikang, Wang, Jie, Ecenur Ustun, Fang, Zhenman, Zhang, Zhiru, Cong, Jason
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 06.09.2022
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose TAPA, an end-to-end framework that compiles a C++ task-parallel dataflow program into a high-frequency FPGA accelerator. Compared to existing solutions, TAPA has two major advantages. First, TAPA provides a set of convenient APIs that allow users to easily express flexible and complex inter-task communication structures. Second, TAPA adopts a coarse-grained floorplanning step during HLS compilation for accurate pipelining of potential critical paths. In addition, TAPA implements several optimization techniques specifically tailored for modern HBM-based FPGAs. In our experiments with a total of 43 designs, we improve the average frequency from 147 MHz to 297 MHz (a 102% improvement) with no loss of throughput and a negligible change in resource utilization. Notably, in 16 experiments we make the originally unroutable designs achieve 274 MHz on average. The framework is available at https://github.com/UCLA-VAST/tapa and the core floorplan module is available at https://github.com/UCLA-VAST/AutoBridge.
Bibliographie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2209.02663