Deterministic Algorithms for Decremental Approximate Shortest Paths: Faster and Simpler

In the decremental \((1+\epsilon)\)-approximate Single-Source Shortest Path (SSSP) problem, we are given a graph \(G=(V,E)\) with \(n = |V|, m = |E|\), undergoing edge deletions, and a distinguished source \(s \in V\), and we are asked to process edge deletions efficiently and answer queries for dis...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Maximilian Probst Gutenberg, Wulff-Nilsen, Christian
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 29.01.2020
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the decremental \((1+\epsilon)\)-approximate Single-Source Shortest Path (SSSP) problem, we are given a graph \(G=(V,E)\) with \(n = |V|, m = |E|\), undergoing edge deletions, and a distinguished source \(s \in V\), and we are asked to process edge deletions efficiently and answer queries for distance estimates \(\widetilde{\mathbf{dist}}_G(s,v)\) for each \(v \in V\), at any stage, such that \(\mathbf{dist}_G(s,v) \leq \widetilde{\mathbf{dist}}_G(s,v) \leq (1+ \epsilon)\mathbf{dist}_G(s,v)\). In the decremental \((1+\epsilon)\)-approximate All-Pairs Shortest Path (APSP) problem, we are asked to answer queries for distance estimates \(\widetilde{\mathbf{dist}}_G(u,v)\) for every \(u,v \in V\). In this article, we consider the problems for undirected, unweighted graphs. We present a new \emph{deterministic} algorithm for the decremental \((1+\epsilon)\)-approximate SSSP problem that takes total update time \(O(mn^{0.5 + o(1)})\). Our algorithm improves on the currently best algorithm for dense graphs by Chechik and Bernstein [STOC 2016] with total update time \(\tilde{O}(n^2)\) and the best existing algorithm for sparse graphs with running time \(\tilde{O}(n^{1.25}\sqrt{m})\) [SODA 2017] whenever \(m = O(n^{1.5 - o(1)})\). In order to obtain this new algorithm, we develop several new techniques including improved decremental cover data structures for graphs, a more efficient notion of the heavy/light decomposition framework introduced by Chechik and Bernstein and the first clustering technique to maintain a dynamic \emph{sparse} emulator in the deterministic setting. As a by-product, we also obtain a new simple deterministic algorithm for the decremental \((1+\epsilon)\)-approximate APSP problem with near-optimal total running time \(\tilde{O}(mn /\epsilon)\) matching the time complexity of the sophisticated but rather involved algorithm by Henzinger, Forster and Nanongkai [FOCS 2013].
AbstractList In the decremental \((1+\epsilon)\)-approximate Single-Source Shortest Path (SSSP) problem, we are given a graph \(G=(V,E)\) with \(n = |V|, m = |E|\), undergoing edge deletions, and a distinguished source \(s \in V\), and we are asked to process edge deletions efficiently and answer queries for distance estimates \(\widetilde{\mathbf{dist}}_G(s,v)\) for each \(v \in V\), at any stage, such that \(\mathbf{dist}_G(s,v) \leq \widetilde{\mathbf{dist}}_G(s,v) \leq (1+ \epsilon)\mathbf{dist}_G(s,v)\). In the decremental \((1+\epsilon)\)-approximate All-Pairs Shortest Path (APSP) problem, we are asked to answer queries for distance estimates \(\widetilde{\mathbf{dist}}_G(u,v)\) for every \(u,v \in V\). In this article, we consider the problems for undirected, unweighted graphs. We present a new \emph{deterministic} algorithm for the decremental \((1+\epsilon)\)-approximate SSSP problem that takes total update time \(O(mn^{0.5 + o(1)})\). Our algorithm improves on the currently best algorithm for dense graphs by Chechik and Bernstein [STOC 2016] with total update time \(\tilde{O}(n^2)\) and the best existing algorithm for sparse graphs with running time \(\tilde{O}(n^{1.25}\sqrt{m})\) [SODA 2017] whenever \(m = O(n^{1.5 - o(1)})\). In order to obtain this new algorithm, we develop several new techniques including improved decremental cover data structures for graphs, a more efficient notion of the heavy/light decomposition framework introduced by Chechik and Bernstein and the first clustering technique to maintain a dynamic \emph{sparse} emulator in the deterministic setting. As a by-product, we also obtain a new simple deterministic algorithm for the decremental \((1+\epsilon)\)-approximate APSP problem with near-optimal total running time \(\tilde{O}(mn /\epsilon)\) matching the time complexity of the sophisticated but rather involved algorithm by Henzinger, Forster and Nanongkai [FOCS 2013].
Author Maximilian Probst Gutenberg
Wulff-Nilsen, Christian
Author_xml – sequence: 1
  fullname: Maximilian Probst Gutenberg
– sequence: 2
  givenname: Christian
  surname: Wulff-Nilsen
  fullname: Wulff-Nilsen, Christian
BookMark eNotjs1KAzEYAIMoWGsfwFvA865Jvuwm6620VoWCQgseS7L7xabsT01S6eN3QU9zm5k7ct0PPRLywFkudVGwJxPO_jcXjPGcM82qKzIRADzTUohbMovxwBgTpRJFARPytcSEofO9j8nXdN5-D8GnfRepGwJdYh2wwz6Zls6PxzCcfWcS0s1-CAljop8m7eMzXZk4WqjpG7rx3bHFcE9unGkjzv45JdvVy3bxlq0_Xt8X83VmCgFZWUqFVmnuDHOsKk0tOVphVQkOrHbKYKNUU8vKNdZWVoGBBpizWDe2Mhqm5PFPO779nMaj3WE4hX4s7gRIXSopOMAFSwJWuQ
ContentType Paper
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2001.10809
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a523-6647eb781fa0f096ac41eb2b763f3b8f7aed77dc49fdbb9b73a3d30fbecdb9a83
IEDL.DBID M7S
IngestDate Mon Jun 30 09:19:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523-6647eb781fa0f096ac41eb2b763f3b8f7aed77dc49fdbb9b73a3d30fbecdb9a83
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2348674213?pq-origsite=%requestingapplication%
PQID 2348674213
PQPubID 2050157
ParticipantIDs proquest_journals_2348674213
PublicationCentury 2000
PublicationDate 20200129
PublicationDateYYYYMMDD 2020-01-29
PublicationDate_xml – month: 01
  year: 2020
  text: 20200129
  day: 29
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7123576
SecondaryResourceType preprint
Snippet In the decremental \((1+\epsilon)\)-approximate Single-Source Shortest Path (SSSP) problem, we are given a graph \(G=(V,E)\) with \(n = |V|, m = |E|\),...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Clustering
Data structures
Emulators
Graphs
Query processing
Run time (computers)
Shortest-path problems
Title Deterministic Algorithms for Decremental Approximate Shortest Paths: Faster and Simpler
URI https://www.proquest.com/docview/2348674213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66KXjyN_6YIwevZU1S28aLTLehB0dxA-dpJGniCrrNto79-b5knR4ELx5LKYT36Hvf9_LxPYQuTRgqHSrfiyVQlEAQ6QFuVp4A8Co5EVKawC2biPr9eDTiSTVwKypZ5bomukKdzpSdkbcos95wASXsZv7h2a1R9na1WqGxierWJYE46d7ge8ZCwwgQM1tdZjrrrpbIl9nC0kLi1HX8Vwl2faW3-98T7aF6IuY630cbenqAtp2eUxWH6LlTyVycDzNuv73Cl-XkvcAAUnHHYsWVqz9uW1PxZQbAVePBxEpvixIngAuLa9wT1kYBi2mKB5m1Ec6P0LDXHd7de9UOBYg2ZV4YBpGGLBAjfANsRaiAAJeWUFUMk7GJhE6jKFUBN6mUXEZMsJT5BjKbSi5idoxq09lUnyAMRE1KHXBCBbR15XNKhYAWaK6MkZSnp6ixDtO4-g-K8U-Mzv5-fY52qGWyPvEob6BamX_qC7SlFmVW5E1Uv-32k6emSy88JQ-PycsXV3Gy_Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dS8MwFL3oVPTJb_yYmgd9LLZJbRdBZDiHsjkGG-jbSNJEB1pnW-f8Uf5Hb7JNHwTffPC50Ca9yc05ycm5AIcmipSOlO9VJFKUUATSQ9ysPIHgVfJASGlCV2wibrUqd3e8PQMf07swVlY5zYkuUSfPyu6RH1NmveFCGrDzwYtnq0bZ09VpCY3xsGjo9zekbPnZdQ3je0Rp_bJ7ceVNqgrg9ynzoiiMNbYrMMI3iN-FCgNklxLnmWGyYmKhkzhOVMhNIiWXMRMsYb7BviaSiwrD187CHKIIyp1SsPO1pUOjGAE6G5-dOqewY5GN-kPLQgMn5uM_Mr5bxurL_-wHrMBcWwx0tgozOl2DBadWVfk63NYmIh7nMk2qj_fY0OLhKScIwUnNIuFxzQJStZbpoz7Cck06D1ZYnBekjag3PyV1YU0iiEgT0ulbk-RsA7p_0ZVNKKXPqd4CgjRUSh3ygAoELcrnlAqBC7w5MUZSnmxDeRqV3mSW573vkOz8_vgAFq-6N81e87rV2IUlajm7H3iUl6FUZK96D-bVsOjn2b4bUQR6fxzAT2OVD5k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+Algorithms+for+Decremental+Approximate+Shortest+Paths%3A+Faster+and+Simpler&rft.jtitle=arXiv.org&rft.au=Maximilian+Probst+Gutenberg&rft.au=Wulff-Nilsen%2C+Christian&rft.date=2020-01-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2001.10809