FMplex: A Novel Method for Solving Linear Real Arithmetic Problems

In this paper we introduce a novel quantifier elimination method for conjunctions of linear real arithmetic constraints. Our algorithm is based on the Fourier-Motzkin variable elimination procedure, but by case splitting we are able to reduce the worst-case complexity from doubly to singly exponenti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Nalbach, Jasper, Promies, Valentin, Ábrahám, Erika, Kobialka, Paul
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 02.10.2023
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we introduce a novel quantifier elimination method for conjunctions of linear real arithmetic constraints. Our algorithm is based on the Fourier-Motzkin variable elimination procedure, but by case splitting we are able to reduce the worst-case complexity from doubly to singly exponential. The adaption of the procedure for SMT solving has strong correspondence to the simplex algorithm, therefore we name it FMplex. Besides the theoretical foundations, we provide an experimental evaluation in the context of SMT solving.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2310.00995