Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risks Data: With Applications to Massive Biobank Data
Semiparametric joint models of longitudinal and competing risks data are computationally costly and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and compet...
Saved in:
| Published in: | arXiv.org |
|---|---|
| Main Authors: | , , , , , |
| Format: | Paper |
| Language: | English |
| Published: |
Ithaca
Cornell University Library, arXiv.org
08.02.2022
|
| Subjects: | |
| ISSN: | 2331-8422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Semiparametric joint models of longitudinal and competing risks data are computationally costly and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and competing risks survival data. By developing and implementing customized linear scan algorithms, we reduce the computational complexities from \(O(n^2)\) or \(O(n^3)\) to \(O(n)\) in various components including numerical integration, risk set calculation, and standard error estimation, where \(n\) is the number of subjects. Using both simulated and real world biobank data, we demonstrate that these linear scan algorithms generate drastic speed-up of up to hundreds of thousands fold when \(n>10^4\), sometimes reducing the run-time from days to minutes. We have developed an R-package, FastJM, based on the proposed algorithms for joint modeling of longitudinal and time-to-event data with and without competing risks, and made it publicly available on the Comprehensive R Archive Network (CRAN). |
|---|---|
| AbstractList | Semiparametric joint models of longitudinal and competing risks data are computationally costly and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and competing risks survival data. By developing and implementing customized linear scan algorithms, we reduce the computational complexities from \(O(n^2)\) or \(O(n^3)\) to \(O(n)\) in various components including numerical integration, risk set calculation, and standard error estimation, where \(n\) is the number of subjects. Using both simulated and real world biobank data, we demonstrate that these linear scan algorithms generate drastic speed-up of up to hundreds of thousands fold when \(n>10^4\), sometimes reducing the run-time from days to minutes. We have developed an R-package, FastJM, based on the proposed algorithms for joint modeling of longitudinal and time-to-event data with and without competing risks, and made it publicly available on the Comprehensive R Archive Network (CRAN). |
| Author | Li, Shanpeng Zhou, Jin Li, Ning Zhou, Hua Li, Gang Wang, Hong |
| Author_xml | – sequence: 1 givenname: Shanpeng surname: Li fullname: Li, Shanpeng – sequence: 2 givenname: Ning surname: Li fullname: Li, Ning – sequence: 3 givenname: Hong surname: Wang fullname: Wang, Hong – sequence: 4 givenname: Jin surname: Zhou fullname: Zhou, Jin – sequence: 5 givenname: Hua surname: Zhou fullname: Zhou, Hua – sequence: 6 givenname: Gang surname: Li fullname: Li, Gang |
| BookMark | eNotkN1OAjEQhRujiYg8gHeTeA22XbpbvEPEv0BMlMRLMtsfLOy267YQH8aHdYNeTTLnnG9y5oKc-uANIVeMjsZSCHqD7bc7jDjrFmwsOT8hPZ5lbCjHnJ-TQYxbSinPCy5E1iM_c2udcsYnmFab0Lr0WUdAr-G5bipTdwImFzwECwjvpnYNtlib1DoFL8F1uWXQpgIbWlgEv3Fpr53H6siYhboxyfkNvLm4i3CPCW_hozsC06apnDqyI6QAS4zRHQzcuVCi3x2tl-TMYhXN4H_2yephvpo9DRevj8-z6WKIgvOhnijJJ0rzrNCZlkWZm1KyIlMGc0XLnDOhLTLJSsWktDSXRa6RK6Us1UIVWZ9c_2GbNnztTUzrbdi3XYe45kJKJibdw7Jfi3huog |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2110.14822 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-d9c829cd237d3d87b6eb8173cea6c0b6215dfa181bc188f06876da2cccf0d5c73 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:27:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-d9c829cd237d3d87b6eb8173cea6c0b6215dfa181bc188f06876da2cccf0d5c73 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2588159002?pq-origsite=%requestingapplication% |
| PQID | 2588159002 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2588159002 |
| PublicationCentury | 2000 |
| PublicationDate | 20220208 |
| PublicationDateYYYYMMDD | 2022-02-08 |
| PublicationDate_xml | – month: 02 year: 2022 text: 20220208 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7846925 |
| SecondaryResourceType | preprint |
| Snippet | Semiparametric joint models of longitudinal and competing risks data are computationally costly and their current implementations do not scale well to massive... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Biobanks Numerical integration Run time (computers) Standard error |
| Title | Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risks Data: With Applications to Massive Biobank Data |
| URI | https://www.proquest.com/docview/2588159002 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELXKbiv1RKFUtFA0B66BxPbGdi8I6KJSwSoC1MIJOWObRrAJ3YQVH9OPre2GthISF45R4iQaOW9ePOP3CNlUVqUSOU8YRZtw1GminHOJo8LkpRTcRkuWb0diMpHn56roF9zavq3yARMjUJsGwxr5Nh1JmQWLS7pz-zMJrlGhutpbaCyQYVBJyGLr3unfNRaaC8-Y2Z9iZpTu2taz-2q-Ff56toICJn0EwTGvHCw-943ekGGhb-1sibyw9TJ5Ffs5sX1Lfo2jNITPKLB7c-VHdT-mLejaQJQDnvY7jmpoHGg4tdMqaIBPg70Wwtem8uOCS9oNeE4LR00wNbozwUAr3mM_km2f9OCkaq9b-Kw7_Qm--4fA7n8FcegaOPbk3AMq7FUeOOrreOkKOTsYn-1_SXojhkR7epYYhZIqNJQJw4wUZW5LmQmGVueYlrmPvHHaU4USMyldmnuENZoiokvNCAV7RwZ1U9tVAgIV5y51juUl58hLnWbGKJYqzUYmy9-T9YdYX_YfU3v5L9Afnj69Rl7TsDshNFXLdTLoZnf2I3mJ865qZxtkuDeeFCcbcY74o-LwuLj4Da2lytA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKC4IT5SUKpcwBjmkTOxvbSAiVPtTS7aqiK-ht5YxtGrWblE1a4L_wF_ofO3Z3AQmJWw-ck9iRZzTfjOfxMfZKO50qzPNEcHRJjiZNtPc-8VzaolQyd5GS5VNfDgbq6EgfzLHLWS9MKKuc2cRoqG2D4Y58jfeUygLFJX939jUJrFEhuzqj0LhWiz334xuFbO3b3U2S72vOt7eGGzvJlFUgMeRrJFaj4hotF9IKq2RZuFJlUqAzBaZlQRBovSHcKzFTyqcFmQtrOCL61PZQClr2FlsgL4LrWCl4-OtKhxeSHHRxnTuNk8LWzOR7dbEagqzVMHCT_2XxI4xt3__PDmCRLRyYMzd5wOZc_ZDdidWq2D5iP7fi4AvCS1g__UI_2R2PWzC1hTjseDztp6qh8WDg0I2rMOF8HMjDED40FX0XOOBOgTx26DeBsuncBnqwuMZGDCUI0uFj1Z60sGk68wY-0yaw_ke6H7oG9in0ILiA9xWZxfokvvqYDW_iPJ6w-bqp3VMGEnWe-9R7UZR5jnlp0sxaLVJtRM9mxRJbnol2NDUV7ei3XJ_9-_FLdndnuN8f9XcHe8_ZPR76MEL5uFpm893k3L1gt_Giq9rJSlRLYKMb1oIrG9slFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Algorithms+and+Implementation+of+a+Semiparametric+Joint+Model+for+Longitudinal+and+Competing+Risks+Data%3A+With+Applications+to+Massive+Biobank+Data&rft.jtitle=arXiv.org&rft.au=Li%2C+Shanpeng&rft.au=Li%2C+Ning&rft.au=Wang%2C+Hong&rft.au=Zhou%2C+Jin&rft.date=2022-02-08&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2110.14822 |