Parametric "Non-nested" Discriminants for Multiplicities of Univariate Polynomials
We consider the problem of complex root classification, i.e., finding the conditions on the coefficients of a univariate polynomial for all possible multiplicity structures on its complex roots. It is well known that such conditions can be written as conjunctions of several polynomial equations and...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
22.04.2023
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We consider the problem of complex root classification, i.e., finding the conditions on the coefficients of a univariate polynomial for all possible multiplicity structures on its complex roots. It is well known that such conditions can be written as conjunctions of several polynomial equations and one inequation in the coefficients. Those polynomials in the coefficients are called discriminants for multiplicities. It is well known that discriminants can be obtained by using repeated parametric gcd's. The resulting discriminants are usually nested determinants, that is, determinants of matrices whose entries are determinants, and so son. In this paper, we give a new type of discriminants which are not based on repeated gcd's. The new discriminants are simpler in that they are non-nested determinants and have smaller maximum degrees. |
|---|---|
| AbstractList | We consider the problem of complex root classification, i.e., finding the conditions on the coefficients of a univariate polynomial for all possible multiplicity structures on its complex roots. It is well known that such conditions can be written as conjunctions of several polynomial equations and one inequation in the coefficients. Those polynomials in the coefficients are called discriminants for multiplicities. It is well known that discriminants can be obtained by using repeated parametric gcd's. The resulting discriminants are usually nested determinants, that is, determinants of matrices whose entries are determinants, and so son. In this paper, we give a new type of discriminants which are not based on repeated gcd's. The new discriminants are simpler in that they are non-nested determinants and have smaller maximum degrees. |
| Author | Yang, Jing Hong, Hoon |
| Author_xml | – sequence: 1 givenname: Hoon surname: Hong fullname: Hong, Hoon – sequence: 2 givenname: Jing surname: Yang fullname: Yang, Jing |
| BookMark | eNotjkFLwzAYQIMoOOd-gLcwz51fvjTtepTpVJg6ZJ5H0n6BjDaZSTv031vQ07u9967YuQ-eGLsRsMiXSsGdjt_utEAJYgEghTpjE5RSZMsc8ZLNUjoAABYlKiUn7GOro-6oj67m87fgM0-pp2bOH1yqo-uc175P3IbIX4e2d8fW1a53lHiw_NO7k45O98S3of3xoXO6Tdfswo6g2T-nbLd-3K2es83708vqfpNphZhpoVRVFwobWxqj88YUVlYExlJlSktQkUFh6qZQhARKV7mhBhBNrkvMGzllt3_aYwxfw3i9P4Qh-rG4x7IAWQqsUP4CPCBUkw |
| ContentType | Paper |
| Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2301.00315 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-a1559c652df7bba4db6f39e0bfe9b7fe09eb21bcd65e2e05a94bed022b4a724d3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:21:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-a1559c652df7bba4db6f39e0bfe9b7fe09eb21bcd65e2e05a94bed022b4a724d3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2760371292?pq-origsite=%requestingapplication% |
| PQID | 2760371292 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2760371292 |
| PublicationCentury | 2000 |
| PublicationDate | 20230422 |
| PublicationDateYYYYMMDD | 2023-04-22 |
| PublicationDate_xml | – month: 04 year: 2023 text: 20230422 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2023 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8293624 |
| SecondaryResourceType | preprint |
| Snippet | We consider the problem of complex root classification, i.e., finding the conditions on the coefficients of a univariate polynomial for all possible... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Coefficients Polynomials |
| Title | Parametric "Non-nested" Discriminants for Multiplicities of Univariate Polynomials |
| URI | https://www.proquest.com/docview/2760371292 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66KfjkHS9zhOFr3Jam7fIkeBkKrpS5h_k0coWCtLOdQ_-9OVmnD4IvPpZCKGny5cs53_kOQpdScGsHNiBKMU2YkJaIKKBEScf1A8u0Fr5Q-ClOksF0ytM64FbVsso1Jnqg1oWCGHmXxhG4y1FOr-dvBLpGQXa1bqGxiZrgktD30r3n7xgLjWLHmINVMtNbd3VF-ZEtQf3cv4L1HP6CYH-uDHf_-0V7qJmKuSn30YbJD9C213Oq6hCNUwGqK7Dfx52kyEnu45odfJcBTtT6F-wYKx6tJIWZ8t6quLAYxBruCu1YKE6L108oXHaL9AhNhveT2wdSt08gwpEqIiDhqKKQahtLKRjU2wXc9KQ1XMbW9Li7VPel0lFoqOmFgjNptDvSJRMxZTo4Ro28yM0JwsYMYCxOdaCZcaTCoaQUwg0YgaQmPEWt9QzN6i1QzX6m5-zv1-doB3q4Q4qG0hZqLMp3c4G21HKRVWUbNW_uk3Tc9n_WPaWPo_TlCzLQsag |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwJBDG4QNHryHR-oE6LHUZh9MQfjQSQQkRDl4I3MMyExuwiI8qP8j04H0IOJNw6eN2my02n7Tfu1BTiXgltbtQFVKtQ0FNJSEQeMKumwfmBDrYVvFG4l7Xb1-Zl3cvC56IVBWuXCJ3pHrTOFOfIrlsQ4XY5xdjN4pbg1CqurixUas2txb6bv7sk2um7WnH4vGKvfdW8bdL5VgAqHNajAOpyKI6ZtIqUIsQ0t4KYsreEysabM3VuzIpWOI8NMORI8lEa7SCdDkbBQB07sChQcimDcMwWfvlM6LE4cQA9mtVM_KexKDD_6EyRbVy7RfKJfHt-HsfrmPzuALSh0xMAMtyFn0h1Y82xVNdqFx45AThkuFyCldpbS1GdtS6TWRy84Z_cQh8fJw4ww2Vd-cizJLEEqinBmNzakk71MsS3bmeAedJfxF_uQT7PUHAAxpoqyONOBDo2DTC4GSCGcwBgJQ9EhFBcK6c0NfNT70cbR35_PYL3RfWj1Ws32_TFs4LZ6LEYxVoT8ePhmTmBVTcb90fDUXyYCvSXr7gsufA1s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+%22Non-nested%22+Discriminants+for+Multiplicities+of+Univariate+Polynomials&rft.jtitle=arXiv.org&rft.au=Hong%2C+Hoon&rft.au=Yang%2C+Jing&rft.date=2023-04-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2301.00315 |