Schoenberg's theorem for real and complex Hilbert spheres revisited

Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L denote a locally compact group and let \overline{\D} denote the closed unit disc in the complex plane. Continuous functions f:\overline{\D}\t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Berg, Christian, Peron, Ana P, Porcu, Emilio
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 25.01.2017
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L denote a locally compact group and let \overline{\D} denote the closed unit disc in the complex plane. Continuous functions f:\overline{\D}\times L\to \C such that f(\xi \cdot \eta,u^{-1}v) is a positive definite kernel on the product of the unit sphere in \ell_2(\C) and L are characterized as the functions with a uniformly convergent expansion f(z,u)=\sum_{m,n=0}^\infty \varphi_{m,n}(u)z^m\overline{z}^n, where \varphi_{m,n} is a double sequence of continuous positive definite functions on L such that \sum\varphi_{m,n}(e_L)<\infty (e_L is the neutral element of L). It is shown how the coefficient functions \varphi_{m,n} are obtained as limits from expansions for positive definite functions on finite dimensional complex spheres via a Rodrigues formula for disc polynomials. Similar results are obtained for the real Hilbert sphere.
AbstractList Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L denote a locally compact group and let \overline{\D} denote the closed unit disc in the complex plane. Continuous functions f:\overline{\D}\times L\to \C such that f(\xi \cdot \eta,u^{-1}v) is a positive definite kernel on the product of the unit sphere in \ell_2(\C) and L are characterized as the functions with a uniformly convergent expansion f(z,u)=\sum_{m,n=0}^\infty \varphi_{m,n}(u)z^m\overline{z}^n, where \varphi_{m,n} is a double sequence of continuous positive definite functions on L such that \sum\varphi_{m,n}(e_L)<\infty (e_L is the neutral element of L). It is shown how the coefficient functions \varphi_{m,n} are obtained as limits from expansions for positive definite functions on finite dimensional complex spheres via a Rodrigues formula for disc polynomials. Similar results are obtained for the real Hilbert sphere.
Author Peron, Ana P
Porcu, Emilio
Berg, Christian
Author_xml – sequence: 1
  givenname: Christian
  surname: Berg
  fullname: Berg, Christian
– sequence: 2
  givenname: Ana
  surname: Peron
  middlename: P
  fullname: Peron, Ana P
– sequence: 3
  givenname: Emilio
  surname: Porcu
  fullname: Porcu, Emilio
BookMark eNotjrFOwzAURS0EEqX0A9gsMTAl2O_ZcTyiCihSJYayV07yTFKlcbDTqp9PJJjOcnTuvWPXQxiIsQcpclVqLZ5dvHTnXBohc2FAqiu2AESZlQrglq1SOgghoDCgNS7Yele3gYaK4vdT4lNLIdKR-xB5JNdzNzS8DsexpwvfdP2sTTyNLUVKs3DuUjdRc89uvOsTrf65ZLu316_1Jtt-vn-sX7aZ0wCZVlqgo4pIonJQ6ZKKUiLNR4ytK2scegLyytbWeAW6KKghI31hta0Ql-zxrzrG8HOiNO0P4RSHeXAPwiglQSPgL_TRTTg
ContentType Paper
Copyright 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1701.07214
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a522-54503aebee134a2b58e6813e72579cb97a3fe2ef49c97f42566ede71f6959b33
IEDL.DBID M7S
IngestDate Mon Jun 30 09:42:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-54503aebee134a2b58e6813e72579cb97a3fe2ef49c97f42566ede71f6959b33
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2074412532?pq-origsite=%requestingapplication%
PQID 2074412532
PQPubID 2050157
ParticipantIDs proquest_journals_2074412532
PublicationCentury 2000
PublicationDate 20170125
PublicationDateYYYYMMDD 2017-01-25
PublicationDate_xml – month: 01
  year: 2017
  text: 20170125
  day: 25
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2017
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6135215
SecondaryResourceType preprint
Snippet Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Continuity (mathematics)
Mathematical analysis
Polynomials
Theorems
Title Schoenberg's theorem for real and complex Hilbert spheres revisited
URI https://www.proquest.com/docview/2074412532
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7opuDJ3_hjjhwET51t0jbNSXA45sFRnId5Gmn6CgPdZjvH_nxfsk4PghePJVDCS957X16-fA_g2i8CGkE65EQovVDHhaeVUB4nV6JslgV-YlyzCTkYJKORSuuCW1XTKjcx0QXqfGZsjdxWQihz80jwu_mHZ7tG2dvVuoXGNjStSkLgqHvD7xoLjyUhZrG-zHTSXbe6XE2WHStC3rHKYOGvEOzySm__vzM6gGaq51gewhZOj2DX8TlNdQxdq665Jm_dVGz9WvGdEUBlBBLfmJ7mzJHJccX6EytztWCVFRjAipXuvTkB0RMY9h5eun2v7pfg6cgeKcPIF5oWBQMRap5FCcZJIJBsIJXJlNSiQI5FqIySBflqHGOOMihiFalMiFNoTGdTPAOGSpq8IOyV-4J-KlUemowcV_Kc_DeLz6G1sci43vLV-MccF38PX8Iet7nRDzwetaCxKD_xCnbMcjGpyjY07x8G6XPbrSR9pY9P6esXazepHA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AHElJI4D8cDYihUrfpQJTqUhcpxLlIlSEtSSvlP_EjOSQMDElsH5pMs-3z-7uF7EHJhRhZSAJ0cF7jhSC8ypLCFwfApoTYLLNNX2bAJ3uv5w6Hol8hnUQuj0yoLTMyAOpwoHSPXkRDU3My12e301dBTo_TvajFCIxeLNny8o8uW3rTu8H4vGWvcD-pNYzlVwJCudrwc17Qlbh0s25EscH3wfMsGjrIrVCC4tCNgEDlCCR6hRHsehMCtyBOuCHT4EwG_4iDBLJNKv9XtP37HdJiHq7h2_nmatQq7lsliPK_ppuc13YnM-QX5mR5rbP0vDmzjyeUUkh1SgniXrGfZqirdI3XdOzRPTbtKaV6L-ULR_KZoAj9TGYc0S5WHBW2OdROvGU11-wRIaZJV06OZvU8eVrDrA1KOJzEcEgqCqzBCyzI0bVyUi9BRAcISZyGiU-AdkWrB_9HyQaejH-Yf_00-JxvNQbcz6rR67ROyybQVYFoGc6ukPEve4JSsqflsnCZnS-mh5Gm1l_UFvpQBug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Schoenberg%27s+theorem+for+real+and+complex+Hilbert+spheres+revisited&rft.jtitle=arXiv.org&rft.au=Berg%2C+Christian&rft.au=Peron%2C+Ana+P&rft.au=Porcu%2C+Emilio&rft.date=2017-01-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1701.07214