Schoenberg's theorem for real and complex Hilbert spheres revisited
Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L denote a locally compact group and let \overline{\D} denote the closed unit disc in the complex plane. Continuous functions f:\overline{\D}\t...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
25.01.2017
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L denote a locally compact group and let \overline{\D} denote the closed unit disc in the complex plane. Continuous functions f:\overline{\D}\times L\to \C such that f(\xi \cdot \eta,u^{-1}v) is a positive definite kernel on the product of the unit sphere in \ell_2(\C) and L are characterized as the functions with a uniformly convergent expansion f(z,u)=\sum_{m,n=0}^\infty \varphi_{m,n}(u)z^m\overline{z}^n, where \varphi_{m,n} is a double sequence of continuous positive definite functions on L such that \sum\varphi_{m,n}(e_L)<\infty (e_L is the neutral element of L). It is shown how the coefficient functions \varphi_{m,n} are obtained as limits from expansions for positive definite functions on finite dimensional complex spheres via a Rodrigues formula for disc polynomials. Similar results are obtained for the real Hilbert sphere. |
|---|---|
| AbstractList | Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L denote a locally compact group and let \overline{\D} denote the closed unit disc in the complex plane. Continuous functions f:\overline{\D}\times L\to \C such that f(\xi \cdot \eta,u^{-1}v) is a positive definite kernel on the product of the unit sphere in \ell_2(\C) and L are characterized as the functions with a uniformly convergent expansion f(z,u)=\sum_{m,n=0}^\infty \varphi_{m,n}(u)z^m\overline{z}^n, where \varphi_{m,n} is a double sequence of continuous positive definite functions on L such that \sum\varphi_{m,n}(e_L)<\infty (e_L is the neutral element of L). It is shown how the coefficient functions \varphi_{m,n} are obtained as limits from expansions for positive definite functions on finite dimensional complex spheres via a Rodrigues formula for disc polynomials. Similar results are obtained for the real Hilbert sphere. |
| Author | Peron, Ana P Porcu, Emilio Berg, Christian |
| Author_xml | – sequence: 1 givenname: Christian surname: Berg fullname: Berg, Christian – sequence: 2 givenname: Ana surname: Peron middlename: P fullname: Peron, Ana P – sequence: 3 givenname: Emilio surname: Porcu fullname: Porcu, Emilio |
| BookMark | eNotjrFOwzAURS0EEqX0A9gsMTAl2O_ZcTyiCihSJYayV07yTFKlcbDTqp9PJJjOcnTuvWPXQxiIsQcpclVqLZ5dvHTnXBohc2FAqiu2AESZlQrglq1SOgghoDCgNS7Yele3gYaK4vdT4lNLIdKR-xB5JNdzNzS8DsexpwvfdP2sTTyNLUVKs3DuUjdRc89uvOsTrf65ZLu316_1Jtt-vn-sX7aZ0wCZVlqgo4pIonJQ6ZKKUiLNR4ytK2scegLyytbWeAW6KKghI31hta0Ql-zxrzrG8HOiNO0P4RSHeXAPwiglQSPgL_TRTTg |
| ContentType | Paper |
| Copyright | 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1701.07214 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-54503aebee134a2b58e6813e72579cb97a3fe2ef49c97f42566ede71f6959b33 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:42:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-54503aebee134a2b58e6813e72579cb97a3fe2ef49c97f42566ede71f6959b33 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2074412532?pq-origsite=%requestingapplication% |
| PQID | 2074412532 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2074412532 |
| PublicationCentury | 2000 |
| PublicationDate | 20170125 |
| PublicationDateYYYYMMDD | 2017-01-25 |
| PublicationDate_xml | – month: 01 year: 2017 text: 20170125 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2017 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.6135215 |
| SecondaryResourceType | preprint |
| Snippet | Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Continuity (mathematics) Mathematical analysis Polynomials Theorems |
| Title | Schoenberg's theorem for real and complex Hilbert spheres revisited |
| URI | https://www.proquest.com/docview/2074412532 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7opuDJ3_hjjhwET51t0jbNSXA45sFRnId5Gmn6CgPdZjvH_nxfsk4PghePJVDCS957X16-fA_g2i8CGkE65EQovVDHhaeVUB4nV6JslgV-YlyzCTkYJKORSuuCW1XTKjcx0QXqfGZsjdxWQihz80jwu_mHZ7tG2dvVuoXGNjStSkLgqHvD7xoLjyUhZrG-zHTSXbe6XE2WHStC3rHKYOGvEOzySm__vzM6gGaq51gewhZOj2DX8TlNdQxdq665Jm_dVGz9WvGdEUBlBBLfmJ7mzJHJccX6EytztWCVFRjAipXuvTkB0RMY9h5eun2v7pfg6cgeKcPIF5oWBQMRap5FCcZJIJBsIJXJlNSiQI5FqIySBflqHGOOMihiFalMiFNoTGdTPAOGSpq8IOyV-4J-KlUemowcV_Kc_DeLz6G1sci43vLV-MccF38PX8Iet7nRDzwetaCxKD_xCnbMcjGpyjY07x8G6XPbrSR9pY9P6esXazepHA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AHElJI4D8cDYihUrfpQJTqUhcpxLlIlSEtSSvlP_EjOSQMDElsH5pMs-3z-7uF7EHJhRhZSAJ0cF7jhSC8ypLCFwfApoTYLLNNX2bAJ3uv5w6Hol8hnUQuj0yoLTMyAOpwoHSPXkRDU3My12e301dBTo_TvajFCIxeLNny8o8uW3rTu8H4vGWvcD-pNYzlVwJCudrwc17Qlbh0s25EscH3wfMsGjrIrVCC4tCNgEDlCCR6hRHsehMCtyBOuCHT4EwG_4iDBLJNKv9XtP37HdJiHq7h2_nmatQq7lsliPK_ppuc13YnM-QX5mR5rbP0vDmzjyeUUkh1SgniXrGfZqirdI3XdOzRPTbtKaV6L-ULR_KZoAj9TGYc0S5WHBW2OdROvGU11-wRIaZJV06OZvU8eVrDrA1KOJzEcEgqCqzBCyzI0bVyUi9BRAcISZyGiU-AdkWrB_9HyQaejH-Yf_00-JxvNQbcz6rR67ROyybQVYFoGc6ukPEve4JSsqflsnCZnS-mh5Gm1l_UFvpQBug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Schoenberg%27s+theorem+for+real+and+complex+Hilbert+spheres+revisited&rft.jtitle=arXiv.org&rft.au=Berg%2C+Christian&rft.au=Peron%2C+Ana+P&rft.au=Porcu%2C+Emilio&rft.date=2017-01-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1701.07214 |