Schoenberg's theorem for real and complex Hilbert spheres revisited

Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L denote a locally compact group and let \overline{\D} denote the closed unit disc in the complex plane. Continuous functions f:\overline{\D}\t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Berg, Christian, Peron, Ana P, Porcu, Emilio
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 25.01.2017
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L denote a locally compact group and let \overline{\D} denote the closed unit disc in the complex plane. Continuous functions f:\overline{\D}\times L\to \C such that f(\xi \cdot \eta,u^{-1}v) is a positive definite kernel on the product of the unit sphere in \ell_2(\C) and L are characterized as the functions with a uniformly convergent expansion f(z,u)=\sum_{m,n=0}^\infty \varphi_{m,n}(u)z^m\overline{z}^n, where \varphi_{m,n} is a double sequence of continuous positive definite functions on L such that \sum\varphi_{m,n}(e_L)<\infty (e_L is the neutral element of L). It is shown how the coefficient functions \varphi_{m,n} are obtained as limits from expansions for positive definite functions on finite dimensional complex spheres via a Rodrigues formula for disc polynomials. Similar results are obtained for the real Hilbert sphere.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1701.07214