Krylov complexity and orthogonal polynomials
Krylov complexity measures operator growth with respect to a basis, which is adapted to the Heisenberg time evolution. The construction of that basis relies on the Lanczos algorithm, also known as the recursion method. The mathematics of Krylov complexity can be described in terms of orthogonal poly...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
25.05.2022
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Krylov complexity measures operator growth with respect to a basis, which is adapted to the Heisenberg time evolution. The construction of that basis relies on the Lanczos algorithm, also known as the recursion method. The mathematics of Krylov complexity can be described in terms of orthogonal polynomials. We provide a pedagogical introduction to the subject and work out analytically a number of examples involving the classical orthogonal polynomials, polynomials of the Hahn class, and the Tricomi-Carlitz polynomials. |
|---|---|
| Bibliografia: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2205.12815 |