Krylov complexity and orthogonal polynomials

Krylov complexity measures operator growth with respect to a basis, which is adapted to the Heisenberg time evolution. The construction of that basis relies on the Lanczos algorithm, also known as the recursion method. The mathematics of Krylov complexity can be described in terms of orthogonal poly...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Mück, Wolfgang, Yang, Yi
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 25.05.2022
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Krylov complexity measures operator growth with respect to a basis, which is adapted to the Heisenberg time evolution. The construction of that basis relies on the Lanczos algorithm, also known as the recursion method. The mathematics of Krylov complexity can be described in terms of orthogonal polynomials. We provide a pedagogical introduction to the subject and work out analytically a number of examples involving the classical orthogonal polynomials, polynomials of the Hahn class, and the Tricomi-Carlitz polynomials.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2205.12815