The group of diffeomorphisms of the circle: reproducing kernels and analogs of spherical functions
The group \(Diff\) of diffeomorphisms of the circle is an infinite dimensional analog of the real semisimple Lie groups \(U(p,q)\), \(Sp(2n,R)\), \(SO^*(2n)\); the space \(\Xi\) of univalent functions is an analog of the corresponding classical complex Cartan domains. We present explicit formulas fo...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavný autor: | |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
09.01.2016
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The group \(Diff\) of diffeomorphisms of the circle is an infinite dimensional analog of the real semisimple Lie groups \(U(p,q)\), \(Sp(2n,R)\), \(SO^*(2n)\); the space \(\Xi\) of univalent functions is an analog of the corresponding classical complex Cartan domains. We present explicit formulas for realizations of highest weight representations of \(Diff\) in the space of holomorphic functionals on \(\Xi\), reproducing kernels on \(\Xi\) determining inner products, and expressions ('canonical cocycles') replacing spherical functions. |
|---|---|
| Bibliografia: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1601.02148 |