The group of diffeomorphisms of the circle: reproducing kernels and analogs of spherical functions

The group \(Diff\) of diffeomorphisms of the circle is an infinite dimensional analog of the real semisimple Lie groups \(U(p,q)\), \(Sp(2n,R)\), \(SO^*(2n)\); the space \(\Xi\) of univalent functions is an analog of the corresponding classical complex Cartan domains. We present explicit formulas fo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavný autor: Neretin, Yury A
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 09.01.2016
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The group \(Diff\) of diffeomorphisms of the circle is an infinite dimensional analog of the real semisimple Lie groups \(U(p,q)\), \(Sp(2n,R)\), \(SO^*(2n)\); the space \(\Xi\) of univalent functions is an analog of the corresponding classical complex Cartan domains. We present explicit formulas for realizations of highest weight representations of \(Diff\) in the space of holomorphic functionals on \(\Xi\), reproducing kernels on \(\Xi\) determining inner products, and expressions ('canonical cocycles') replacing spherical functions.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1601.02148