A Low-Latency FFT-IFFT Cascade Architecture

This paper addresses the design of a partly-parallel cascaded FFT-IFFT architecture that does not require any intermediate buffer. Folding can be used to design partly-parallel architectures for FFT and IFFT. While many cascaded FFT-IFFT architectures can be designed using various folding sets for t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavný autor: Parhi, Keshab K
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 16.09.2023
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper addresses the design of a partly-parallel cascaded FFT-IFFT architecture that does not require any intermediate buffer. Folding can be used to design partly-parallel architectures for FFT and IFFT. While many cascaded FFT-IFFT architectures can be designed using various folding sets for the FFT and the IFFT, for a specified folded FFT architecture, there exists a unique folding set to design the IFFT architecture that does not require an intermediate buffer. Such a folding set is designed by processing the output of the FFT as soon as possible (ASAP) in the folded IFFT. Elimination of the intermediate buffer reduces latency and saves area. The proposed approach is also extended to interleaved processing of multi-channel time-series. The proposed FFT-IFFT cascade architecture saves about N/2 memory elements and N/4 clock cycles of latency compared to a design with identical folding sets. For the 2-interleaved FFT-IFFT cascade, the memory and latency savings are, respectively, N/2 units and N/2 clock cycles, compared to a design with identical folding sets.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2309.09035