An output-sensitive Algorithm to partition a Sequence of Integers into Subsets with equal Sums
We present a polynomial time algorithm, which solves a nonstandard Variation of the well-known PARTITION-problem: Given positive integers \(n, k\) and \(t\) such that \(t \geq n\) and \(k \cdot t = {n+1 \choose 2}\), the algorithm partitions the elements of the set \(I_n = \{1, \ldots, n\}\) into \(...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
18.02.2019
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a polynomial time algorithm, which solves a nonstandard Variation of the well-known PARTITION-problem: Given positive integers \(n, k\) and \(t\) such that \(t \geq n\) and \(k \cdot t = {n+1 \choose 2}\), the algorithm partitions the elements of the set \(I_n = \{1, \ldots, n\}\) into \(k\) mutually disjoint subsets \(T_j\) such that \(\cup_{j=1}^k T_j = I_n\) and \(\sum_{x \in T_{j}} x = t\) for each \(j \in \{1,2, \ldots, k\}\). The algorithm needs \(\mathcal{O}(n \cdot ( \frac{n}{2k} + \log \frac{n(n+1)}{2k} ))\) steps to insert the \(n\) elements of \(I_n\) into the \(k\) sets \(T_j\). |
|---|---|
| Bibliografia: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1811.04014 |