An output-sensitive Algorithm to partition a Sequence of Integers into Subsets with equal Sums
We present a polynomial time algorithm, which solves a nonstandard Variation of the well-known PARTITION-problem: Given positive integers \(n, k\) and \(t\) such that \(t \geq n\) and \(k \cdot t = {n+1 \choose 2}\), the algorithm partitions the elements of the set \(I_n = \{1, \ldots, n\}\) into \(...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
18.02.2019
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present a polynomial time algorithm, which solves a nonstandard Variation of the well-known PARTITION-problem: Given positive integers \(n, k\) and \(t\) such that \(t \geq n\) and \(k \cdot t = {n+1 \choose 2}\), the algorithm partitions the elements of the set \(I_n = \{1, \ldots, n\}\) into \(k\) mutually disjoint subsets \(T_j\) such that \(\cup_{j=1}^k T_j = I_n\) and \(\sum_{x \in T_{j}} x = t\) for each \(j \in \{1,2, \ldots, k\}\). The algorithm needs \(\mathcal{O}(n \cdot ( \frac{n}{2k} + \log \frac{n(n+1)}{2k} ))\) steps to insert the \(n\) elements of \(I_n\) into the \(k\) sets \(T_j\). |
|---|---|
| Bibliographie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1811.04014 |