Systematic model reduction captures the dynamics of extrinsic noise in biochemical subnetworks
We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g. protein interaction networks involving complex formation and dissociation reactions. We propose the use of model reduction strategies to understand the 'extrinsic' source...
Saved in:
| Published in: | arXiv.org |
|---|---|
| Main Authors: | , , |
| Format: | Paper |
| Language: | English |
| Published: |
Ithaca
Cornell University Library, arXiv.org
01.07.2020
|
| Subjects: | |
| ISSN: | 2331-8422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g. protein interaction networks involving complex formation and dissociation reactions. We propose the use of model reduction strategies to understand the 'extrinsic' sources of stochasticity arising from the rest of the network. Our approaches are based on subnetwork dynamical equations derived by projection methods and by path integrals. The results provide a principled derivation of the different components of the extrinsic noise that is observed experimentally in cellular biochemical reactions, over and above the intrinsic noise from the stochasticity of biochemical events in the subnetwork. We explore several intermediate approximations to assess systematically the relative importance of different extrinsic noise components, including initial transients, long-time plateaus, temporal correlations, multiplicative noise terms and nonlinear noise propagation. The best approximations achieve excellent accuracy in quantitative tests on a simple protein network and on the epidermal growth factor receptor signalling network. |
|---|---|
| AbstractList | We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g. protein interaction networks involving complex formation and dissociation reactions. We propose the use of model reduction strategies to understand the 'extrinsic' sources of stochasticity arising from the rest of the network. Our approaches are based on subnetwork dynamical equations derived by projection methods and by path integrals. The results provide a principled derivation of the different components of the extrinsic noise that is observed experimentally in cellular biochemical reactions, over and above the intrinsic noise from the stochasticity of biochemical events in the subnetwork. We explore several intermediate approximations to assess systematically the relative importance of different extrinsic noise components, including initial transients, long-time plateaus, temporal correlations, multiplicative noise terms and nonlinear noise propagation. The best approximations achieve excellent accuracy in quantitative tests on a simple protein network and on the epidermal growth factor receptor signalling network. |
| Author | Sollich, Peter Rubin, Katy J Bravi, Barbara |
| Author_xml | – sequence: 1 givenname: Barbara surname: Bravi fullname: Bravi, Barbara – sequence: 2 givenname: Katy surname: Rubin middlename: J fullname: Rubin, Katy J – sequence: 3 givenname: Peter surname: Sollich fullname: Sollich, Peter |
| BookMark | eNotjk1LAzEURYMoWGt_gLuA66mZfEzyllLUCgUXdm3JZF5oapvUSUbbf--Aru7m3HPvDbmMKSIhdzWbS6MUe7D9KXzPOWNizoxm8oJMuBB1ZSTn12SW844xxhvNlRIT8vF-zgUPtgRHD6nDPe2xG1wJKVJnj2XoMdOyRdqdoz0El2nyFE-lDzGPlZhCRhoibUNyWxwBu6d5aCOWn9R_5lty5e0-4-w_p2T9_LReLKvV28vr4nFVWcXrSnQeW6_H9062pgbVOsOUQKk7sIDgpQLGHShptAGmbIMj3IAH0B4aEFNy_6c99ulrwFw2uzT0cVzccKEBpNJQi18mv1gU |
| ContentType | Paper |
| Copyright | 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2003.08704 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest MSED ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a521-3dfebf7550c4b8195bc8053e47d9a9e9f45902c954878905a6e75569f997f9693 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:25:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a521-3dfebf7550c4b8195bc8053e47d9a9e9f45902c954878905a6e75569f997f9693 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2379945791?pq-origsite=%requestingapplication% |
| PQID | 2379945791 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2379945791 |
| PublicationCentury | 2000 |
| PublicationDate | 20200701 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 20200701 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2020 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7269627 |
| SecondaryResourceType | preprint |
| Snippet | We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g. protein interaction networks involving... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Biochemistry Complex formation Growth factors Model reduction Noise Noise propagation Proteins |
| Title | Systematic model reduction captures the dynamics of extrinsic noise in biochemical subnetworks |
| URI | https://www.proquest.com/docview/2379945791 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgBYmJb_FRKg-spm3i2vGEBGoFElQR7VAWKvtiS1mSErcVPx_bTcuAxMJoxYqis-98uXt-D6HbxDDZBQ0EWAyEJn1NhIh6BKjssQiAUQiqJS98NEqmU5HWBTdbwyo3MTEE6qwEXyPvRDEXgva56N3PP4lXjfLd1VpCYxc1PVMZbaDmw2CUvm2rLBHjLmeO1-3MQN7VkdVXvgpEoHddt1npryAcTpbh4X-_6Qg1UznX1THa0cUJ2g-ITrCn6GO85WjGQe4GV56l1a8DBjn3jQOLXfaHs7UmvcWlwS5SV3nhXoCLMrca5wVWudfUCqQC2C5VsYaN2zM0GQ4mj0-kFlMg0p3QJM6MVoY7AwBVvnemIHH-pynPhBRaGOp5XMDTv_mrsX3JtJvMhBGCG8FEfI4aRVnoC4QViMylWd57GTWJJzyLtEqUzmLg0BOXqLWx1qx2CDv7MdXV34-v0UHkf2kDIraFGotqqW_QHqwWua3a9fq2PURz7Ebp82v6_g28SrTo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AHGUJq4djwgBqBq1Ycq0aEsRPbFkTKQlKQt9EfxH7HdpgxIbB2Yk1hy7vzd2Xf-PoSu_IiKW1DgAPXAIX5DOZy7dQeIqFMXgBKwqiVd1u_7oxEflNBXcRfGtFUWmGiBOkzBnJHXXI9xThqM1-_H745RjTLV1UJCY-EWHTX_0Fu2_K79qO177brNp-FDy1mqCjhChyrHCyMlI6YTcyDSFJEk-NoRFWEhF1zxiBhCEzA8aOaOaENQpV-mPOKcRZwa7iWN-BWifd0vo8qg3Ru8rA51XMp0iu4tqqeWK6wmss94ZnlHb2712iC_MN8GsubOP_sFu3rqYqyyPVRSyT7atP2qkB-g1-cVAzW2Yj44Mxy0xsswiLEpi-RY57Y4nCfiTX-C0wjrOJTFiR4AJ2mcKxwnWMZGMcxSJuB8KpNFU3x-iIbrmNERKidpoo4RlsBDnUQabKIk8g2dm6ukL1XoAYM6P0HVwjjBcrnnwY9lTv9-fIm2WsNeN-i2-50ztO2azbvt_a2i8iSbqnO0AbNJnGcXS9fCKFizJb8BtMwLwg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+model+reduction+captures+the+dynamics+of+extrinsic+noise+in+biochemical+subnetworks&rft.jtitle=arXiv.org&rft.au=Bravi%2C+Barbara&rft.au=Rubin%2C+Katy+J&rft.au=Sollich%2C+Peter&rft.date=2020-07-01&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2003.08704 |