Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time

We show that, for planar point sets, the number of non-crossing Hamiltonian paths is polynomially bounded in the number of non-crossing paths, and the number of non-crossing Hamiltonian cycles (polygonalizations) is polynomially bounded in the number of surrounding cycles. As a consequence, we can l...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Author: Eppstein, David
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 01.03.2023
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that, for planar point sets, the number of non-crossing Hamiltonian paths is polynomially bounded in the number of non-crossing paths, and the number of non-crossing Hamiltonian cycles (polygonalizations) is polynomially bounded in the number of surrounding cycles. As a consequence, we can list the non-crossing Hamiltonian paths or the polygonalizations, in time polynomial in the output size, by filtering the output of simple backtracking algorithms for non-crossing paths or surrounding cycles respectively. To prove these results we relate the numbers of non-crossing structures to two easily-computed parameters of the point set: the minimum number of points whose removal results in a collinear set, and the number of points interior to the convex hull. These relations also lead to polynomial-time approximation algorithms for the numbers of structures of all four types, accurate to within a constant factor of the logarithm of these numbers.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2303.00147