Rank one HCIZ at high temperature: interpolating between classical and free convolutions
We study the rank one Harish-Chandra-Itzykson-Zuber integral in the limit where \(\frac{N \beta}{2} \to c \), called the high temperature regime and show that it can be used to construct a promising one-parameter interpolation, with parameter \(c\) between the classical and the free convolution. Thi...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
22.01.2021
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study the rank one Harish-Chandra-Itzykson-Zuber integral in the limit where \(\frac{N \beta}{2} \to c \), called the high temperature regime and show that it can be used to construct a promising one-parameter interpolation, with parameter \(c\) between the classical and the free convolution. This \(c\)-convolution has a simple interpretation in terms of another associated family of distribution indexed by \(c\), called the Markov-Krein transform: the \(c\)-convolution of two distributions corresponds to the classical convolution of their Markov-Krein transforms. We derive first cumulants-moments relations, a central limit theorem, a Poisson limit theorem and shows several numerical examples of \(c\)-convoluted distributions. |
|---|---|
| Bibliografia: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2101.01810 |