Re-ranking Based Diversification: A Unifying View
We analyze different re-ranking algorithms for diversification and show that majority of them are based on maximizing submodular/modular functions from the class of parameterized concave/linear over modular functions. We study the optimality of such algorithms in terms of the `total curvature'....
Saved in:
| Published in: | arXiv.org |
|---|---|
| Main Author: | |
| Format: | Paper |
| Language: | English |
| Published: |
Ithaca
Cornell University Library, arXiv.org
26.06.2019
|
| Subjects: | |
| ISSN: | 2331-8422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We analyze different re-ranking algorithms for diversification and show that majority of them are based on maximizing submodular/modular functions from the class of parameterized concave/linear over modular functions. We study the optimality of such algorithms in terms of the `total curvature'. We also show that by adjusting the hyperparameter of the concave/linear composition to trade-off relevance and diversity, if any, one is in fact tuning the `total curvature' of the function for relevance-diversity trade-off. |
|---|---|
| Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1906.11285 |