The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation

We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Jin, Bangti, Lazarov, Raytcho, Liu, Yikan, Zhou, Zhi
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 31.01.2014
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one and two-dimension problems confirm the convergence rates of the theoretical results.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1401.8049