A Generalized Apagodu-Zeilberger Algorithm
The Apagodu-Zeilberger algorithm can be used for computing annihilating operators for definite sums over hypergeometric terms, or for definite integrals over hyperexponential functions. In this paper, we propose a generalization of this algorithm which is applicable to arbitrary \(\partial\)-finite...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
02.08.2014
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The Apagodu-Zeilberger algorithm can be used for computing annihilating operators for definite sums over hypergeometric terms, or for definite integrals over hyperexponential functions. In this paper, we propose a generalization of this algorithm which is applicable to arbitrary \(\partial\)-finite functions. In analogy to the hypergeometric case, we introduce the notion of proper \(\partial\)-finite functions. We show that the algorithm always succeeds for these functions, and we give a tight a priori bound for the order of the output operator. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1402.2409 |