A Generalized Apagodu-Zeilberger Algorithm

The Apagodu-Zeilberger algorithm can be used for computing annihilating operators for definite sums over hypergeometric terms, or for definite integrals over hyperexponential functions. In this paper, we propose a generalization of this algorithm which is applicable to arbitrary \(\partial\)-finite...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Chen, Shaoshi, Kauers, Manuel, Koutschan, Christoph
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 02.08.2014
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Apagodu-Zeilberger algorithm can be used for computing annihilating operators for definite sums over hypergeometric terms, or for definite integrals over hyperexponential functions. In this paper, we propose a generalization of this algorithm which is applicable to arbitrary \(\partial\)-finite functions. In analogy to the hypergeometric case, we introduce the notion of proper \(\partial\)-finite functions. We show that the algorithm always succeeds for these functions, and we give a tight a priori bound for the order of the output operator.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1402.2409