A Generalized Apagodu-Zeilberger Algorithm

The Apagodu-Zeilberger algorithm can be used for computing annihilating operators for definite sums over hypergeometric terms, or for definite integrals over hyperexponential functions. In this paper, we propose a generalization of this algorithm which is applicable to arbitrary \(\partial\)-finite...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Chen, Shaoshi, Kauers, Manuel, Koutschan, Christoph
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 02.08.2014
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Apagodu-Zeilberger algorithm can be used for computing annihilating operators for definite sums over hypergeometric terms, or for definite integrals over hyperexponential functions. In this paper, we propose a generalization of this algorithm which is applicable to arbitrary \(\partial\)-finite functions. In analogy to the hypergeometric case, we introduce the notion of proper \(\partial\)-finite functions. We show that the algorithm always succeeds for these functions, and we give a tight a priori bound for the order of the output operator.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1402.2409