Adaptive Damping and Mean Removal for the Generalized Approximate Message Passing Algorithm
The generalized approximate message passing (GAMP) algorithm is an efficient method of MAP or approximate-MMSE estimation of \(x\) observed from a noisy version of the transform coefficients \(z = Ax\). In fact, for large zero-mean i.i.d sub-Gaussian \(A\), GAMP is characterized by a state evolution...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
05.12.2014
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The generalized approximate message passing (GAMP) algorithm is an efficient method of MAP or approximate-MMSE estimation of \(x\) observed from a noisy version of the transform coefficients \(z = Ax\). In fact, for large zero-mean i.i.d sub-Gaussian \(A\), GAMP is characterized by a state evolution whose fixed points, when unique, are optimal. For generic \(A\), however, GAMP may diverge. In this paper, we propose adaptive damping and mean-removal strategies that aim to prevent divergence. Numerical results demonstrate significantly enhanced robustness to non-zero-mean, rank-deficient, column-correlated, and ill-conditioned \(A\). |
|---|---|
| Bibliografia: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1412.2005 |