(1+1)-dimensional separation of variables

In this paper we explore general conditions which guarantee that the geodesic flow on a 2-dimensional manifold with indefinite signature is locally separable. This is equivalent to showing that a 2-dimensional natural Hamiltonian system on the hyperbolic plane possesses a second integral of motion w...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Pucacco, Giuseppe, Rosquist, Kjell
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 23.10.2007
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we explore general conditions which guarantee that the geodesic flow on a 2-dimensional manifold with indefinite signature is locally separable. This is equivalent to showing that a 2-dimensional natural Hamiltonian system on the hyperbolic plane possesses a second integral of motion which is a quadratic polynomial in the momenta associated with a 2nd-rank Killing tensor. We examine the possibility that the integral is preserved by the Hamiltonian flow on a given energy hypersurface only (weak integrability) and derive the additional requirement necessary to have conservation at arbitrary values of the Hamiltonian (strong integrability). Using null coordinates, we show that the leading-order coefficients of the invariant are arbitrary functions of one variable in the case of weak integrability. These functions are quadratic polynomials in the coordinates in the case of strong integrability. We show that for \((1+1)\)-dimensional systems there are three possible types of conformal Killing tensors, and therefore, three distinct separability structures in contrast to the single standard Hamilton-Jacobi type separation in the positive definite case. One of the new separability structures is the complex/harmonic type which is characterized by complex separation variables. The other new type is the linear/null separation which occurs when the conformal Killing tensor has a null eigenvector.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.0710.4256