Multiple Testing for Neuroimaging via Hidden Markov Random Field

Traditional voxel-level multiple testing procedures in neuroimaging, mostly \(p\)-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Mar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Shu, Hai, Bin Nan, Koeppe, Robert
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 28.07.2016
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Traditional voxel-level multiple testing procedures in neuroimaging, mostly \(p\)-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative.
AbstractList Traditional voxel-level multiple testing procedures in neuroimaging, mostly \(p\)-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative.
Author Shu, Hai
Koeppe, Robert
Bin Nan
Author_xml – sequence: 1
  givenname: Hai
  surname: Shu
  fullname: Shu, Hai
– sequence: 2
  fullname: Bin Nan
– sequence: 3
  givenname: Robert
  surname: Koeppe
  fullname: Koeppe, Robert
BookMark eNotjs9LwzAYhoMoOOfuHgOeW_Pra9ObMpwTNgXpfWTJl5HZJTNdi3--Ez298Bye570hlzFFJOSOs1JpAPZg8ncYS66YKrms-QWZCCl5oZUQ12TW93vGmKhqASAn5HE9dKdw7JC22J9C3FGfMn3DIadwMLtfMAZDl8E5jHRt8mca6YeJLh3oImDnbsmVN12Ps_-dknbx3M6Xxer95XX-tCoMcCiwbri30jagGmReN8KjqNFoxa1xVjteAROWoVMcQcpKgt5qj3YLHJUVckru_7THnL6G89XNPg05nosbwWrdaK0YyB_Wq0wm
ContentType Paper
Copyright 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1404.1371
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a515-e791fc3c9549e0f892fe27ea841cadc8d16502c0ed41e5336358b8fecb51e4c23
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:19:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a515-e791fc3c9549e0f892fe27ea841cadc8d16502c0ed41e5336358b8fecb51e4c23
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2078988405?pq-origsite=%requestingapplication%
PQID 2078988405
PQPubID 2050157
ParticipantIDs proquest_journals_2078988405
PublicationCentury 2000
PublicationDate 20160728
PublicationDateYYYYMMDD 2016-07-28
PublicationDate_xml – month: 07
  year: 2016
  text: 20160728
  day: 28
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2016
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5985099
SecondaryResourceType preprint
Snippet Traditional voxel-level multiple testing procedures in neuroimaging, mostly \(p\)-value based, often ignore the spatial correlations among neighboring voxels...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Alzheimer's disease
Computer simulation
Disease control
Fields (mathematics)
Markov analysis
Markov chains
Maximization
Medical imaging
Neurology
Optimization
Parameter estimation
Positron emission
Test procedures
Three dimensional models
Tomography
Title Multiple Testing for Neuroimaging via Hidden Markov Random Field
URI https://www.proquest.com/docview/2078988405
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL2CFiQm3uJRKg-sKfUjiTOBQFRlaBWVDmWqHD9QhyYlKRGfj21SGJBYGC0v1nV0c3LuyTkA1yw0SkdUBWEWU0_dBIIaE4Q0MlliCOOC-7CJeDzms1mSNoRb1cgqNz3RN2pVSMeROyaEJ9x-joS3q7fApUa56WoTobENbedUxlrQvn8cp5NvloVEscXM9Gs-6c27bkT5sah7zlWmh2mMf_Vg_2IZ7P_3SAfQTsVKl4ewpfMj2PWCTlkdw92oUQqiqfPRyF-RRafIW3Eslj6ZCNULgYbOQSRH7o-dokYTkatiiQZO1XYC08Hj9GEYNGkJgbCYJNBxgo2k0o3tdN_whBhNYi04w1IoyRW2WIzIvlYMa4vxLNDgGTdaZiHWTBJ6Cq28yPUZIINJn2WECGdeo5VFMFKyjCcuqIcpZs6hs6nHvHniq_lPMS7-3r6EPQs6IsePEt6B1rp811ewI-v1oiq7zQV2nQbz2a7Sp1H68gk_Vaia
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AHGlMZxEmdAIAFVqz5UoQxlqhw_UIYmJSkBfhT_EdtNYEBi68DsJT5f7j7fnb8PgAvsSi48h1tu5DumdGNRR0rLdTwZBRJhQokRm_BHIzKZBOMa-KzewuixyiommkDNU6Zr5LoSQgKiriPuzfzF0qpRurtaSWgs3aIvPt7UlS2_7t2r871EqPMQ3nWtUlXAoip3W8IPbMkcpttboi1JgKRAvqAE24xyRritMAtibcGxLRQWUgmZREQKFrm2wEzzHKiI38DK10kdNMa94fjpu6iDPF9BdGfZDjVcYVc0e4-LliaxadmOb_8K-SaPdbb-mQW21c7pXGQ7oCaSXbBuxlVZvgduh-UcJAw1S0jyDBX2hoZoJJ4Z3SVYxBR2NT9KAvV7pLSAjzTh6Qx29MzePghX8c0HoJ6kiTgEUNqojSOEqKbmEVzhM8ZwRAItQ4Q5lkegWZl_Wv7P-fTH9sd_L5-DjW44HEwHvVH_BGwqeOXpSjAiTVBfZK_iFKyxYhHn2VnpOxBMV3xWX-FSAqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Testing+for+Neuroimaging+via+Hidden+Markov+Random+Field&rft.jtitle=arXiv.org&rft.au=Shu%2C+Hai&rft.au=Bin+Nan&rft.au=Koeppe%2C+Robert&rft.date=2016-07-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1404.1371