Multiple Testing for Neuroimaging via Hidden Markov Random Field
Traditional voxel-level multiple testing procedures in neuroimaging, mostly \(p\)-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Mar...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
28.07.2016
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Traditional voxel-level multiple testing procedures in neuroimaging, mostly \(p\)-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative. |
|---|---|
| AbstractList | Traditional voxel-level multiple testing procedures in neuroimaging, mostly \(p\)-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative. |
| Author | Shu, Hai Koeppe, Robert Bin Nan |
| Author_xml | – sequence: 1 givenname: Hai surname: Shu fullname: Shu, Hai – sequence: 2 fullname: Bin Nan – sequence: 3 givenname: Robert surname: Koeppe fullname: Koeppe, Robert |
| BookMark | eNotjs9LwzAYhoMoOOfuHgOeW_Pra9ObMpwTNgXpfWTJl5HZJTNdi3--Ez298Bye570hlzFFJOSOs1JpAPZg8ncYS66YKrms-QWZCCl5oZUQ12TW93vGmKhqASAn5HE9dKdw7JC22J9C3FGfMn3DIadwMLtfMAZDl8E5jHRt8mca6YeJLh3oImDnbsmVN12Ps_-dknbx3M6Xxer95XX-tCoMcCiwbri30jagGmReN8KjqNFoxa1xVjteAROWoVMcQcpKgt5qj3YLHJUVckru_7THnL6G89XNPg05nosbwWrdaK0YyB_Wq0wm |
| ContentType | Paper |
| Copyright | 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1404.1371 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest MSED ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a515-e791fc3c9549e0f892fe27ea841cadc8d16502c0ed41e5336358b8fecb51e4c23 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:19:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a515-e791fc3c9549e0f892fe27ea841cadc8d16502c0ed41e5336358b8fecb51e4c23 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2078988405?pq-origsite=%requestingapplication% |
| PQID | 2078988405 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2078988405 |
| PublicationCentury | 2000 |
| PublicationDate | 20160728 |
| PublicationDateYYYYMMDD | 2016-07-28 |
| PublicationDate_xml | – month: 07 year: 2016 text: 20160728 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2016 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.5985929 |
| SecondaryResourceType | preprint |
| Snippet | Traditional voxel-level multiple testing procedures in neuroimaging, mostly \(p\)-value based, often ignore the spatial correlations among neighboring voxels... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Alzheimer's disease Computer simulation Disease control Fields (mathematics) Markov analysis Markov chains Maximization Medical imaging Neurology Optimization Parameter estimation Positron emission Test procedures Three dimensional models Tomography |
| Title | Multiple Testing for Neuroimaging via Hidden Markov Random Field |
| URI | https://www.proquest.com/docview/2078988405 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwGLSgBYmJt3iUygOrS-y4iT2BQK3K0CoqHcpU-RWUoUlJSsTPx05dGJBYGCMvkeN83-W-yx0AtyQmRNi-gQwODKJRXyImBUWa294scRxIvgmbiCcTNp_zxBNulZdVbmtiU6h1oRxH7pgQxpn9HOnfr96RS41y01UfobEL2s6pjLZA-3EwSabfLAuJYouZw818sjHvuhPlZ1b3nKtMD4cx_lWDm8YyPPzvLR2BdiJWpjwGOyY_AfuNoFNVp-Bh7JWCcOZ8NPI3aNEpbKw4smWTTATrTMCRcxDJoftjp6jhVOS6WMKhU7WdgdlwMHsaIZ-WgITFJMjEHKcqVG5sZ4KUcZIaEhvBKFZCK6axxWJEBUZTbCzGs0CDSZYaJfvYUEXCc9DKi9xcACgV4yqiChvmXnEudaTCUEYylIpqGVyCznY_Fv7EV4ufzbj6e_kaHFjQETl-lLAOaK3LD3MD9lS9zqqy6x9g12kwX-xV8jxOXr8A9UaolA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AFGl9hJE2dAIAFVqz5UoQxlqvwKytCkJCXAj-I_YqcJDEhsHZi9xOfL3ee78_cBcEE8QpjOG0hhSyHHbXNEOXOQ9HVu5tizuL8Um_BGIzqZ-OMa-KzewpixyiomFoFaJsLUyE0lhPpUX0faN_MXZFSjTHe1ktBYukVffbzpK1t23bvX53tJSOchuOuiUlUAMZ27kfJ8HApbmPaWskLqk1ARTzHqYMGkoBJrzEKEpaSDlcZCOiFTTkMleBsrRxieAx3xG472dVoHjXFvOH76LuoQ19MQ3V62QwuusCuWvkd5y5DYtLDt4V8hv8hjna1_ZoFtvXM2V-kOqKl4F6wX46oi2wO3w3IOEgaGJSR-hhp7w4JoJJoVukswjxjsGn6UGJr3SEkOH1kskxnsmJm9fRCs4psPQD1OYnUIIBfUF64jsKImgPlcusK2ucttLhzJrSPQrMw_Lf_nbPpj--O_l8_BRjcYDqaD3qh_AjY1vHJNJZjQJqgv0ld1CtZEvoiy9Kz0HQimKz6rL_O3Ap4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Testing+for+Neuroimaging+via+Hidden+Markov+Random+Field&rft.jtitle=arXiv.org&rft.au=Shu%2C+Hai&rft.au=Bin+Nan&rft.au=Koeppe%2C+Robert&rft.date=2016-07-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1404.1371 |