Algebraic Approach to Entanglement and Entropy

We present a general approach to quantum entanglement and entropy that is based on algebras of observables and states thereon. In contrast to more standard treatments, Hilbert space is an emergent concept, appearing as a representation space of the observable algebra, once a state is chosen. In this...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Balachandran, A P, Govindarajan, T R, de Queiroz, Amilcar R, Reyes-Lega, A F
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 06.02.2013
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a general approach to quantum entanglement and entropy that is based on algebras of observables and states thereon. In contrast to more standard treatments, Hilbert space is an emergent concept, appearing as a representation space of the observable algebra, once a state is chosen. In this approach, which is based on the Gelfand-Naimark-Segal construction, the study of subsystems becomes particularly clear. We explicitly show how the problems associated with partial trace for the study of entanglement of identical particles are readily overcome. In particular, a suitable entanglement measure is proposed, that can be applied to systems of particles obeying Fermi, Bose, para- and even braid group statistics. The generality of the method is also illustrated by the study of time evolution of subsystems emerging from restriction to subalgebras. Also, problems related to anomalies and quantum epistemology are discussed.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1301.1300